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The Potomac Institute for Policy Studies is an independent, nonpartisan, not-for-profit, science 
and technology (S&T) policy research institute. The Institute identifies and leads discussions on 
key S&T and national security issues facing our society, providing an academic forum for the 
study of related policy issues. Based on data and evidence, we develop meaningful policy rec-
ommendations and ensure their implementation at the intersection of business and government.
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From the CEO
Jennifer Buss, PhD
 
Technology is integral to nearly every aspect of our lives—at work, in the car, and at home. 
Everywhere we go, we are interacting with engineered materials, digital communications, 
and other high-end technology and microelectronics—all powered by lithium-ion batter-
ies. We need look no further than the recent CHIPS and Science Act to see how important 
these technologies are to our lives and our national security.

The reach of these technologies is seemingly infinite in our daily lives, but for society, this 
extends even further. The core of our infrastructure—water, utilities, the financial sector, 
and our medical community, for example—relies on technology. While these may seem 
like disparate facets of life and society, they all, along with our iPhones, smart appliances, 
cars, computers, and TVs, etc. rely on the same underlying technological capabilities and 
supply lines. In short, these technologies and their supply chains are what make modern 
life both modern and livable.

The ideas, raw materials, and even finished goods for modern technologies come from all 
around the globe. The United States is not alone, nor is it self-reliant, in the world of high 
technology, and it does not need to be. What is needed are strategies and mechanisms 
to ensure that the country retains access to essential goods and the innovative minds 
that bring them forward. The US has a strong network of allies and partners who share 
our interests. This network is a significant strategic advantage and should be leveraged 
to reduce US and our allies’ dependence on adversarial supply chains.

This issue of STEPS highlights the Potomac Institute’s mission to provide actionable insights 
for policymakers to ensure our nation continues to thrive in the science and technology 
fields. In this issue, our authors address some of our nation’s challenges in retaining access 
to critical minerals and hardware components. Also considered are the emerging difficul-
ties related to promoting the American message around the world, including the lack of 
a shared vision for our national future. Additionally, the authors examine the education 
of the next generation of leaders in science. These are not small obstacles for our nation, 
but the authors offer avenues for government and the commercial sector to work together 
to help develop meaningful solutions for the future.

The recent passage of the CHIPS and Science Act represents a major step in addressing 
some of the critical dependences the United States has in the microelectronics and semi-
conductor supply chain. Potomac Institute congratulates Congress and the Administration 
for this achievement, but as the final article in this issue notes, “now comes the hard work.” 
I hope that the discussions in this issue of STEPS spark further thought in these areas and 
contribute to continued wise policy decisions and investments that benefit our nation.

Jennifer Buss, PhD 
Chief Executive Officer, Potomac Institute 
jbuss@potomacinstitute.org
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From the Editors
Robert (Bob) Hummel, PhD
Timothy W. Bumpus, PhD

This issue of STEPS largely draws from the Potomac Institute’s “Global Competition Project,” 
which views the world not only in terms of a competition for military might, but also as 
a struggle to wield economic and political influence. In the same way that science and 
technology drive developments in military affairs, much of the activity in economic and 
political spheres is influenced by science and technology. In turn, actions in the political 
and economic realms can drive or inhibit the development of new technologies. In this 
issue, we highlight strategic communications, education, semiconductor memory chips, 
batteries, and critical minerals. These issues can profoundly impact the nation’s economic 
prosperity and represent areas where competitive pressures can affect national security 
and seed societal discord.

With contributions by staff of the Potomac Institute and members of the Institute’s Board 
of Regents and Fellows, STEPS has become a venue for amplifying the discussions that 
surround the Institute’s activities. It has also become a resource for Institute affiliates to 
document bold ideas and promulgate potential solutions. In some cases, the intention is 
that the articles help steer policy decisions related to US national interests. In other cases, 
the articles are intended to inform further debate. We welcome additional contributions 
and participation in the discussion by those outside of the Institute’s affiliates, as those 
contributions can lead to new activities and discussions relevant to the mission of the 
Institute. We find that those contributions often lead to new affiliates that continue in their 
participation in the life of the Potomac Institute.

The editors hope you enjoy the articles in this issue, and that you agree that STEPS helps 
fulfill a need in public dialog by combining a rigorous understand of science and technology 
with the many and varied US national policies revolving around ever-changing technologies.

Robert (Bob) Hummel, PhD
Editor-in-Chief, STEPS
Chief Scientist, Potomac Institute
rhummel@potomacinstitute.org

Timothy W. Bumpus, PhD
Associate Editor, STEPS
Research Fellow, Potomac Institute
tbumpus@potomacinstitute.org
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The Shining City upon a Hill

Not long ago, the United States was universally per-
ceived as that shining “city upon a hill”1—a modern nation 
founded solely on an idea and serving as a beacon of free-
dom for the whole world. For 40 years, an independent, 
federally-funded organization had promoted the core val-
ues of the United States, broadcasted local and interna-
tional news, and shared free and open information with the 
rest of the world. Today, that organization, the US Infor-
mation Agency (USIA), has largely ceased to exist and the 
world has lost a trusted, independent voice.

There Once was an Agency

The revolution in communications that connects peo-
ple and nations online has placed the United States in a 
global competition of ideas ideas and memes. The US is 
ill-prepared to compete successfully in this realm. We are 
losing because we are not communicating a clear, coherent 
narrative of our intentions and actions in ways understood 
and trusted by the world. We have no coordinated plan for 
communicating that narrative and no national strategy for 
communications.

Americans aspire to certain values articulated in the found-
ing documents that provide the core constructs of the 
United States, namely: justice, freedom, peace, and the 
duty to protect those values. But today, our nation is no 
longer actively sharing the strong belief in those values 
with the rest of the world. The United States government, 
in particular, is no longer seen as a reliable source of truth. 
In 1999, the US State Department absorbed fractured parts 
of the USIA. It didn’t take long for decision makers to real-
ize that relinquishing an independent voice was a bad idea. 
Two years after the State Department took over the USIA, 
then-Secretary of State Madeline Albright, who had over-
seen the plan, expressed concern that folding USIA into 
the State Department might have been a mistake.2 By 2001, 
the nation felt the loss of an independent and trusted voice 
telling our story.

The USIA’s charter separated it from political bodies and pro-
vided governance that insured its independence, free from 
political influence. This independence, whether perceived 
or real, was lost when factions of USIA were absorbed into 
the US Department of State. Since then, the Broadcasting 

Board of Governors and other organizations have attempted 
to foster an independent voice on behalf of the United 
States. They have not maintained the level of trust previ-
ously held by USIA. The USIA was held in high regard and 
was generally believed to speak the truth concerning the 
United States—whether good, bad, or ugly.

Given this absence of authentic voice, we believe that our 
nation, and indeed the world, again needs to reconstitute 
an independent resource that can coordinate our messag-
ing and relationships on the world stage, and in so doing, 
can earn back and maintain trust as a source of truth.

This new resource might be a new agency, like the USIA, 
or an independent function of an existing organization 
with authority and accountability to coordinate various 
agencies with tasking in public diplomacy and strategic 
messaging.

Projecting Truth and Countering Propaganda: 
USIA History

The desirability of a national source of public information 
has been recognized since the days of World War I. Various 
administrations created organizations designed to spread 
a national message to support our allies and counter our 
adversaries’ propaganda. The Smith-Mundt Act of 1948 
established the “Voice of America” as a communication 
outlet for foreign populations, created the Fulbright Pro-
gram, and in these ways, was designed to “combat weap-
ons of false propaganda and misinformation.”3

Dwight D. Eisenhower had long advocated the need to 
conduct “psychological warfare,” by countering adver-
sary propaganda with a strategic and trusted message.4,5 
In a campaign speech in 1952,6 Eisenhower emphasized 
a whole-of-government approach to strategic messaging 
(primarily to counter communist oppression), and the need 
to inspire world respect of American ideals using peace-
ful tools. He differentiated these strategic messaging goals 
from propaganda by stating that the purpose of the former 
is to “help free people stay free,” by “winning the struggle 
for…minds” through a message with “spiritual strength.”7

In 1953, President Eisenhower’s “Jackson Committee” rec-
ommended creation of a separate agency for these pur-
poses, and Eisenhower’s 1953 Executive Order 10477 
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established the USIA.8 Based on the now-declassified Jack-
son Committee report, the USIA was established for overt 
communications, while covert channels were established 
separately, with all communications coordinated through 
the National Security Council to the president.9 Initially, the 
USIA was engaged in campaigns to support the President’s 

“Chance for Peace” and “Atoms for Peace” proposals, both 
internationally and domestically.10 During the Kennedy 
Administration, famed newscaster Edward R. Murrow led 
the USIA, and tied the agency more closely to the CIA, to 
receive intelligence briefings, counter insurgency training, 
and advice on local issues and culture, particularly in South-
east Asia. There were some indications of USIA involve-
ment in covert operations during Murrow’s tenure.11 While 
there was connectivity between the overt side of public 
diplomacy, and covert aspects of propaganda after Mur-
row’s departure, the USIA refused to work with the CIA in 
most cases, and would not release any information that did 
not have full and accurate attribution.12

Throughout the Cold War, the USIA opened libraries at 
embassies in closed countries, sponsored thousands of cul-
tural exchanges, established over 200 public affairs offices 
throughout the world that fostered social media engage-
ment, and provided access to world news through its Voice 
of America radio network; each with intent to bring truth 
and balance to even the most closed societies. By the end 
of the Cold War, the USIA had a well-connected global net-
work of radio and television broadcasting, cultural and edu-
cational exchange programs, and open access libraries pro-
viding a wide array of knowledge—often serving as the only 
source of free information. The USIA adapted with changes 
taking place in communications technology; having a bud-
get of around $1B per year, offices and outlets throughout 
the world, and a staff of over 10,000 people.

However, the agency was not free of controversy, and con-
cerns were raised that the agency could be used to pro-
mote polemical administration policies13 despite its charter 
to exercise overt public diplomacy. In 1972 and in 1985, 
Congressional action effectively prohibited USIA from 
domestic dissemination.14 This lack of transparency may 
have heightened fears that the USIA was engaged in pro-
paganda, and prohibitions were removed in the Smith-
Mundt Modernization Act of 2012.

The USIA began to lose favor—and funding—in the late 
1980s and ‘90s. The fall of the Berlin Wall and the end of 
the Cold War seemed to lessen the need for psycholo-
gical warfare. Communist ideology had seemingly been 
defeated, and the desire for a “peace dividend” inspired 
cost cutting across the US Department of Defense and 
Department of State. The USIA’s billion-dollar budget was 
an easy target. Infighting and budget cuts created dysfunc-
tion that hurt the organization, and the USIA was defunded 
and absorbed into the State Department in 1999.15

But, in this defrocking, valuable capabilities were lost. 
Many worldwide assets, such as free libraries, were shut-
tered. Perhaps most significantly, the US lost much of its 
ability to understand and influence real audiences within 
adversary and allied nations, alike.

The USIA was able to remain well-respected and trusted 
by demonstrating significant success in messaging, and 
helping to create and maintain the coalition during Des-
ert Storm and Desert Shield. An argument can be made 
that the USIA was one of the organizations that helped the 
United States to prevail in the Cold War. The news pro-
vided by the USIA media organizations was largely of local 
interest to the nations where they were broadcasting, and 
US news was portrayed openly and honestly, inclusive of 
events such as civil rights issues in the ’60s, Watergate in 
the ’70s, and the political scandals of the ’90s. Exchange 
programs, such as the Fulbright program, created genera-
tions of scholars and world leaders who had been exposed 
to US culture and who were educated in US institutions. A 
2008 survey of USIA alumni noted the difference between 
public diplomacy and propaganda, and largely credited 
USIA with creating international understanding and sup-
port for the US and its policies.16 The alumni pointed to 
values of credibility, respect, and truthfulness as the most 
important assets for public diplomacy professionals who 
are working in overseas regions. They rated public diplo-
macy efforts during the Cold War as having been “good” 
or “excellent,” yet a majority felt that by 2008, US public 
diplomacy was marginal or poor.

© 2022 Potomac Institute for Policy Studies 11 
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Strategic Communications Abhors a Vacuum

The events of September 11th 2001 provided a harsh view 
of how much had been lost due to the demise of the USIA 
as it had been. The 9/11 Commission quoted the view of 
NSC staff that by spring 2001, US public diplomacy was so 
diminished in the Middle East that “we have by and large 
ceded the court of public opinion” to Al Qaeda.17 This 
same lack of US public diplomacy was true in Europe, Latin 
America, and East Asia.18

Many USIA functions were absorbed into the Department 
of State’s “Board for International Broadcasting” and the 

“Global Engagement Center” (GEC). These agencies still 
exist, but they neither have the breadth and depth that 
the USIA had, nor operate independently from any given 
administration. The GEC’s mission, for example, embodies 
the mission of countering adversary propaganda—specifi-
cally, to “recognize, understand, expose, and counter for-
eign state and non-state propaganda and disinformation 
efforts aimed at undermining or influencing the policies, 
security, or stability of the United States, its allies, and part-
ner nations.”19 But, countering foreign propaganda requires 
a messaging strategy, coordination with multiple informa-
tion sources, and, most importantly, a source that is trusted 
because it operates outside of political influence. With the 
loss of many overseas offices and resources, the remnants 
of USIA lack connectivity to regional influences and knowl-
edge and, therefore, are relatively impotent.

While the US lacked an independent strategic coordinated 
messaging strategy, messaging by others grew exponen-
tially. US communications lacked overarching guidance. 
One communications expert has stated: “One possible 
reason for the cacophony of discordant messages—in 
addition to the sheer volume of information—is the lack 
of a clear, articulate strategy from the national leadership. 
Without this, the leaders of each department, agency, and 
office are left to decide what is important. In most cases the 
answer is to use the organization’s communication efforts 
to advance its own interests.”20 With the proliferation of 
other nations’ information, voices, and channels, the situa-
tion continues to worsen.

Today, there is intense competition for cognitive influence. 
The Internet and its ability to spread messages globally 
enables any individual to communicate with almost the 

same force and breadth as a nation. People worldwide are 
bombarded with competing ideas that are promulgated 
as “truths.” The United States is not well-positioned in 
this competition. To regain and maintain leadership, the 
US should better diffuse ideas to attract populations to the 
ideals of democratic societies.

Both the US Department of State and Department of 
Defense acknowledge the need for strategic messaging. 
Still, responsibility for strategic communications remains 
fractured within these departments. In the State Depart-
ment, the Undersecretary for Public Diplomacy, Public 
Affairs departments, as well as the Office of Congressional 
and Public Affairs each have responsibilities and processes 
for creating and executing strategic messaging within spe-
cific spheres of influence. The Defense Department has a 
detailed process for approving strategic messaging plans, 
but the substance of such messaging is left to individual 
departments and commands. These efforts have no unifying 
strategy, no executive level messaging plan, no guidance, 
and little evidence of coordination between them.

Regaining the Narrative

In the absence of a coordinated strategic narrative, the 
United States is consistently placed in a reactive posture. 
Control of current narratives has been ceded to others.

The need to create a coordinated, effective strategic nar-
rative was explored in a recent public forum of experts in 
the communications field.21 The forum discussion on strate-
gic messaging and global competitiveness revealed that the 
US needs a coherent and consistent strategic messaging 
campaign to address global competition in the information 
space. Panelists emphasized that the lack of a stable strate-
gic narrative puts the US at risk of alienating allies and driv-
ing competitors to more aggressive engagements. Unco-
ordinated messaging can be counter productive. Reactions 
to misinformation promulgated by others and attempts to 
counter propaganda are not prime venues or vectors to for-
tify US messaging. Once one is reacting to misinformation 
promulgated by others, attempting to counter propaganda, 
it is too late to instill truth.

To illustrate the need for a national-level strategic messag-
ing strategy, it is instructive to look at examples of messag-
ing from the past decade.

12 © 2022, Potomac Institute for Policy Studies
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Attempts at persuasion. Through public and private 
communications, over a period of years, the United States 
attempted to persuade the Chinese not to weaponize 
space. According to a 2013 study for the Department of 
Defense, the campaign had the exact opposite effect.22 It 
pushed China into believing they needed to accelerate 
their programs, and prompted views of the United States 
as untrustworthy, in part because of what was perceived 
as contradictory messaging. US messaging did not con-
sider the background and experiences of decision mak-
ers that they were trying to influence, or how the Chinese 
perspective would interpret and analyze the US state-
ments and actions.

Messaging through actions. In the 1990s, the US sent 
China a message of support for Taiwan by running US war 
ships through the Taiwan Straits. On December 19th, 1995, 
the USS Nimitz transited the Taiwan Straits at the same 
time that the Chinese government was conducting coer-
cive diplomacy via military exercises to influence the Tai-
wanese elections. The United States asserted that this tran-
sit was unplanned, and was merely avoidance of weather. 
But direct links can be drawn between this event and the 
initiation of Chinese anti-ship missile programs, which have 
since matured and complicated the US’ ability to operate 
freely in the Pacific. Again, US action incurred the opposite 
and undesired reaction.

Messaging through publications. Because the United 
States is an open society, messaging can occur through 
public review of official documents. Recently, the US gov-
ernment has taken a more aggressive posture toward China 
in official publications. The 2018 US National Defense Strat-
egy stated that China uses “predatory economic practices 
to intimidate its neighbors while militarizing features in the 
South China Sea.”23 The 2021 Interim National Security 
Strategy Guidance speaks of our “growing rivalry with China” 
and calls China “the only competitor capable of potentially 
combining its economic, diplomatic, military, and techno-
logical power to mount a sustained challenge to a stable 
and open international system.”24 Official publications are 
intended for US audiences, but Chinese government offi-
cials have equal access to them. Some official US docu-
ments treat China as a collaborator and other documents 
depict China as a competitor, while still others regard China 
a threat and adversary. It would take a cohesive narrative to 

reconcile these conflicting ideas so as not to foster negative 
reaction from China, while still making clear the US intent 
not to allow China to continue aggressive actions in regions 
that affect our allies and partners.

The current situation with Russia presents a different set 
of messaging challenges. Russia’s objectives and motiva-
tions differ from China’s. As we are seeing in events in the 
Ukraine, Russia has a more advanced disinformation and 
deception apparatus that requires that the US employ dif-
ferent approaches to convince the Russian populace—and 
the rest of the world—that democratic ideals are worthy 
values of governance. To be effective, a messaging strat-
egy must incorporate understanding of history, culture, and 
the media environment of the target nation. In the case of 
Russia, the messaging strategy requires effective ways to 
undercut and displace false narratives promulgated by offi-
cial Russian information agencies.

The United States faces mass propaganda designed to 
disrupt and divide societies. US efforts to counter the 
narratives that are controlled by others often fail because 
the US government lacks the global trust it once enjoyed. 
As a result, the United States is seen as internally con-
flicted and unable to control the operations of our own 
government.25

Cognitive Security: Truth Fighting its Way 
above the Noise

A cornerstone of a new and independent US information 
agency would be a focus on improving cognitive secu-
rity, worldwide. Cognitive security is a new and emerging 
field that addresses how information provided to individu-
als and groups can be used to influence their beliefs and 
cognition, preventing them from forming their own rational 
beliefs based on truth and factual information.

In today’s world, it is necessary to combat adversarial use 
of perception management, disinformation, and strategic 
deception. While there is nothing new about adversaries’ 
use of these tactics, they have become far more effective 
given globalization and the speed of communications. Dis-
information can now be targeted based on profile informa-
tion concerning the recipient, rather than simply indiscrim-
inately broadcast.

© 2022 Potomac Institute for Policy Studies 13 

 Reclaiming the Narrative: The US and International Communications



Historically, China has made considerable use of strate-
gic deception through perception management. A 2009 
study notes that they call it “psychological warfare.”26 The 
study states that “if China can discern its competitor’s 
thought process through intelligence and guide it through 
deception and perception management, then it stands to 
reap considerable benefits as it pursues its own goals on 
domestic and international fronts.” In 2013, the American 
computer security firm, Mandiant, revealed the extent of 
Chinese military cyber espionage efforts involving “Unit 
61398” targeting US companies and individuals.27

As well, Russia has been highly effective at strategic mes-
saging, whether via disinformation campaigns during the 
Cold War, through the coordinated use of diplomatic lan-
guage, and/or the use of cyber-attacks. A warning was 
imparted to Estonia by cyber means in 2007.28 Prior to 
the 2008 Russian incursion and occupation of portions of 
Georgia, a cyber messaging campaign was used.29 Var-
ious financiers of the Russian Internet Research Agency 
and members of the Russian intelligence unit known as 
the GRU, are currently under US indictment for spread-
ing cyber disinformation during the 2016 US election cam-
paigns.30 The recent invasion of Ukraine has been accom-
panied by Russian strategic messaging,31 which reportedly 
continues to be quite effective in Russia as of this writing. 
Thus, we are seeing real-time experiments and engage-
ments in countering disinformation through crowd-
sourced intelligence and other messaging tactics.

The US has long been committed to the belief that peo-
ple everywhere have the right to the truth, and to estab-
lish beliefs based on access to accurate information. Cogni-
tive security includes practices, methodologies, tactics, and 
tools to defend against social engineering attempts—inten-
tional and unintentional—to cause manipulations and dis-
ruptions to cognition and sensemaking.32

A reconstituted independent force such as the USIA could 
help establish a higher degree of cognitive security. The 
challenge is greater than it was a couple of decades ago, 
as the world—and communication technologies—have 
changed. The new organization could seek to establish 
trust through independence and dissemination of accurate 
information, in languages and context appropriate to the 
recipients. We are not advocating, nor would the popula-
tion tolerate, countering disinformation with disinformation. 

A consistent and uniform message based on a strategy that 
conveys accurate and balanced information, worldwide, 
could replace a cacophony of uncoordinated ad hoc mes-
sages delivered by multiple agencies and multiple voices.

Such an independent function with the necessary author-
ities to create and manage information strategies would 
also require understanding the messages directed at US 
citizenry and proactively countering disinformation before 
it causes harm. Recently, in deterring Russian tactics in 
Ukraine, the United States pre-emptively released key 
intelligence information. With the increasing availability of 
open-source intelligence, such an approach might be effec-
tive, generally. Without stifling free speech, the agency 
could provide broader access to information, coordinate 
the messaging, and provide clarifications and access to the 
multiple views on events.

Reconstituting an Independent Strategic 
Messaging Capacity: Someone Has to Be in 
Charge

Reconstituting a capability similar to the USIA does not 
necessitate a new agency with direct control of all former 
USIA resources and functions, provided it has the author-
ity and responsibility required to coordinate those func-
tions across government agencies—it does not and can-
not begin in a vacuum. USIA existed in the past, and it 
atrophied due to budget cuts and was absorbed into gov-
ernment. The Smith-Mundt Modernization Act of 2012 
updated authorities in the Department of State and the 
Broadcasting Board of Governors (now known as the US 
Agency for Global Media [USAGM]) to globally dissemi-
nate information. The Voice of America still exists, albeit 
as a considerably reduced entity. Radio Free Europe and 
Radio Liberty (RFE/RL) exists as a private corporation with 
US government funding. The USAGM supervises the Voice 
of America, RFE/RL, and other media outlets. However, 
since 2017, the USAGM has been led by a presidentially 
appointed CEO rather than a bipartisan board. In forming a 
new organization or agency that can coordinate and guide 
these messaging functions, lessons learned from prior mis-
takes could inform existing and newly developed struc-
tures as a basis for reinvigorating US strategic messaging.

A new information agency would be different from prior 
iterations because the world has changed politically, 
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econo mically, and technologically. Methods of effective 
strategic messaging are now more sophisticated, and 
messaging can be better tailored to the target audiences 
with consideration of history and culture, and not just lan-
guage. The new agency would need to draw upon exper-
tise in messaging and regional cultures, utilizing both staff 
and advisors.

Enabling legislation would require careful crafting. The 
charter would need to ensure the independence of the 
organization and maintain its continuity across administra-
tion and legislature boundaries—free from political influ-
ence. Messaging should conform exclusively to accurate 
information, while still reflecting American core values. It 
would need to develop world trust, without taint of pro-
paganda, but also proactively counter misinformation and 
deception that might be perpetrated by other nations and/
or groups. The organization would ultimately be responsi-
ble to the American public, through budget and law.

One of the great messaging challenges is to convey the 
uniqueness of the US concepts of “individual freedom” 
and “individual rights.” The US form of democratic gov-
ernment enables the individual to rank above the state in 
many instances (for example by directly voting for leaders 

at many levels of government, or in exercising certain con-
stitutional rights). This idea rankles many foreign govern-
ments because it diminishes the importance of the party, 
castes, leaders, nobility, and government institutions. US 
democracy also motivates participation of individual citi-
zens and serves as a beacon for much of the world’s popu-
lation. It supports ideals that include opportunities for the 
individual to progress up the economic and social scale. 
The charter of the agency should support the use of effec-
tive messaging to demonstrably relate the ideals and aspi-
rations that make the US form of government admired.

If We Don’t Control Our Narrative, Others Will

The United States is in a global information competi-
tion, where messaging is used by adversaries as a weapon 
against US interests. With its messaging strategies widely 
distributed, the United States is not effectively communicat-
ing a coherent narrative of accurate and favorable support 
for American ideals. Without understanding competing nar-
ratives and without contacts and strategies for countering 
disinformation, the US will lose the information war.

For the United States to be successful in this fast-paced 
societal-level competition, it must promote narratives 

THE MISSION OF THE FORMER USIA 

President Dwight D. Eisenhower drove the founding of the United States Information 
Agency (USIA) that led the strategic messaging and public diplomacy campaign during the 
entirety of the Cold War. The USIA’s mission as originally constituted was to:

• Present and explain to foreign audiences US government policies and actions;

• Describe and explain American society, thought, and institutions;

• Provide objective and reliable news, commentary, and information about US and 
international events; and

• Provide surrogate programming where local governments curtail the free flow of 
information and where surrogate programming is in the US interest.
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that best support the US position in the global commons.  
To establish trust, the narrative should be based on our 
founding core ideals and the information must be pre-
sented fully and accurately, devoid of political or market-
ing influence.

Techniques for effectively motivating attitudes and behav-
iors, inspiring loyalty, and drawing people closer together 
have been championed by US corporations in their mar-
keting and branding campaigns. Their techniques include 
developing an understanding of the audience’s experi-
ences and culture. Similar techniques can and should be 
adopted for a US messaging strategy.

The entity must coordinate an uncomplicated narrative that 
supports true goals in a strictly nonpartisan way, such that they 
can endure across administration and congressional change. 

Expertise assuring that messaging is heard and understood 
according to its intended effect (by the intended audiences), 
can be drawn from decades of advanced research and 
experience in regional histories and cultures.

The US must be consistent in maintaining a narrative 
domestically and abroad, and must be prepared to com-
bat disinformation spread through numerous communica-
tions pathways in today’s digital world. Trusted indepen-
dent sources are necessary to achieve this desired level 
of cognitive security. The USIA was largely trusted as a 
defense against foreign propaganda. Given that disinfor-
mation is so easily distributed, such a trusted resource is 
needed now more than ever.
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Introduction

Since the end of World War II over 70 years ago, the United 
States has led the world in technology development. The 
US spearheaded the development of capabilities (in space 
and with semiconductors, computers, lasers, etc.) and the 
education of generations of new scientists and engineers. 
Today, this leadership is under threat. The US needs to seri-
ously reconsider its educational system to include both the 
results (outputs) and the associated research and develop-
ment (R&D) investments that support and drive the system. 
Although the US maintains its global R&D leadership, US 
student performance in science, technology, engineering, 
and mathematics (STEM) may not be strong enough to sus-
tain US educational leadership in the future technology 
competition on the world stage. The ongoing global com-
petition for science and technology superiority has eco-
nomic, military, and geopolitical consequences, and edu-
cation and R&D investments are the most important levers 
of influence.1

Mega Trends in Global R&D Investment

American preeminence in science and technology has not 
happened by chance. Sustained commitments to educa-
tion and investments in basic research have played key 
roles in establishing and maintaining the knowledge eco-
system and innovation driving US partnerships among aca-
demia, government, and the private sector. To compete in 

the global economy going forward, the US needs to renew 
its commitment to strengthen these key components of our 
national infrastructure. 

The US share of global investments in R&D has contracted 
in the post-World War II era, dropping from 70% of global 
R&D investments in 1960 to less than 30% in 2019. This 
occurred despite the fact that US federal R&D funding (in 
constant 2020 dollars) increased from $81B in 1976 to over 
$164B in 2020.2 During the same period, total US R&D 
funding, including corporate and non-federal funding, rose 
from under $250B to almost $500B.3 But, at the same time, 
the increase in total R&D investment in the rest of the world 
has dramatically surpassed the rate of increase in the United 
States (see Figure 1). For example, during 2000-2017, the 
Compound Annual Growth Rate (CAGR) in R&D was nearly 
18% in China and about 10% in South Korea. This com-
pares to a US CAGR of 4%. China is soon to overcome the 
United States in total R&D spending (see Figure 2).

It is not just total investment that has changed, but also the 
ratio of public to private investment in R&D. Today, public 
(government) investment has dropped to less than 30%; 
private sector (business, industry) investment continues 
to provide the growth in US R&D investment (see Figure 
3). This shift changes the focus from scientific discovery 
to product development. To remain competitive, America 
needs to also invest in scientific discovery.

“Since World War II, advancements in science and technology have driven much of 
our economic growth, underpinned our national security, and transformed nearly 

every aspect of Americans’ daily lives. New technologies built on federally-funded 
discovery research have led to new businesses, revolutionized health care, and 

created the mobile, digital world.” 

Diane Souvaine, Chair of the National Science Board,  
before a Hearing of the House Committee on Science, Space and Technology on Jan 29th, 2020.
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Figure 1. Compound Average Growth Rate Percentage of Domestic R&D Expenditures, by Country/Region 2000-2017.

Source: NSF, National 
Science Board, Science & 
Engineering Indicators 2020, 
The State of US Science and 
Engineering 2020, Figure 
13, p. 9. Data sourced 
from NCSES, National 
Patterns of R&D Resources; 
OECD, Main Science and 
Technology Indicators 
2019/1; UNESCO Institute 
for Statistics, Research and 
Experimental Development. 

Source: NSF, National Science 
Board, Science & Engineering 
Indicators 2020, The State of 
US Science and Engineering 
2020, Figure 11. Data from 
NCSES, National Patterns 
of R&D Resources; OECD, 
Main Science and Technology 
Indicators 2019/1; UNESCO 
Institute for Statistics, 
Research and Experimental 
Development.

Figure 2. R&D Spending by Select Countries Over Time. (Gross expenditures, not normalized as a percent of GDP.) 

Figure 3. US R&D Expenditures, by Performing Sector 2000-2019.

Adapted from: NSF, National 
Science Board, Science & 
Engineering Indicators 2020, 
The State of US Science and 
Engineering 2020, Figure 16. 
Data from NCSES, National 
Patterns of R&D Resources.
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A strategy of fast-following is more profitable, but is not 
aligned with a national imperative of establishing an endur-
ing competitive posture.

RECOMMENDATION 1

The United States must prioritize invest-
ment in basic science, R&D, and American 
people—particularly in scientists and engi-
neers—to remain competitive in a global 
environment. This means increasing the US 
federal investment and developing policies 
that favor industrial investment. 

 
Mega Trends in STEM Performance

Succeeding in a technological competition relies on peo-
ple—scientists, mathematicians, data analysts, and engi-
neers—in a workforce that drives the technology progress 
engine. Continuing signs indicate that the state of tech-
nological literacy in the US has been surpassed by other 
nations and is declining domestically. The impact of the 
shift in emphasis on R&D is manifest in student perfor-
mance seen as early as middle school. The 2018 OECD 
Program for International Student Assessment (the PISA 
score) assessed the performance of 15-year-old students 
in math, science, and reading, and the results showed US 
deficiencies.4 In fact, the US students’ performance fails to 
keep pace with results in such diverse nations as China, 
Estonia, Canada, and Poland in all three assessed catego-
ries. Moreover, the US students’ performance shows con-
tinued erosion over time.

How can a nation that birthed the information technology 
era, developed the semiconductor and computer indus-
tries, and landed the first man on the moon—and that 
spends so much on education—be in a competitively dis-
advantageous position?

RECOMMENDATION 2 

Fund the expansion of Dr. Freeman Hrabowski’s 
University of Maryland Baltimore County 
model to other universities to expand the pool 
and diversity of domestic STEM students.

 
The economic incentives have not favored continued US 
dominance in basic (university) research in science and tech-
nology, and maintenance of US leadership in R&D globally. 
Culturally, we might contend that the United States has 
tended to value the accumulation of wealth, at least in the 
last few decades, over the accumulation of knowledge. 

Past examples of great US scientific and engineering 
achievements were often accomplished with the aid of 
foreign-born scientists working within the United States. 
The making of the atomic bomb (the Manhattan project), 
the Apollo program to land humans on the moon, and 
human genome mapping leveraged basic science advances 
to make significant technological achievements. None of 
these would have been possible without non-US born sci-
entists and engineers. The United States benefited from an 
influx of European physicists and mathematicians, German 
rocket scientists, Jewish immigrants, as well as many first- 
and second-generation scientists and engineers educated 
in the United States. 

AN APPROACH TO “EXPERIENCED-BASED LEARNING” 
US education needs new methods because US students are struggling with founda-
tional studies and basic technological literacy. Dr. Freeman Hrabowski, from Univer-
sity of Maryland Baltimore County (UMBC) initiated a program that brings disadvan-
taged youth, who may not have had the appropriate preparation, to UMBC and takes 
the time needed to provide these students with necessary STEM skills, after which 
these students enter a standard engineering or STEM curriculum. This program uses 
“experienced-based” learning through internships and expanded lab time to bring 
the curriculum to life. His results have been phenomenal. Basically, Hrabowski turned 
the time-based 4-year college model into a skills-based approach. If it takes six years, 
does it matter if the United States gets a functioning engineer or scientist?5
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Cultural differences may be reflected in graduate student 
demographics. Forty years ago, most hard science and 
engineering students were US citizens. From 1980 to 2020, 
the number of international graduate students in US univer-
sities rose from about 90,000 to 350,000 today—most in 
the hard sciences.6 Over the same period, the total number 
of US university students rose by about 33%. Sources state 
that in 2017, 82% of electrical and petroleum engineering 
students were international, as were 72% of computer sci-
ence, 71% of industrial engineering, and 70% of statistics 
graduate students in the US.7 Yet more US graduate stu-
dents are foreign-born US residents. Fortunately, stay-rates 
of foreign graduate students (i.e., the percent that remain in 
the United States after graduation) have increased, in part 
because of the 3-year “Optional Practical Training” pro-
gram, with over half employed in STEM fields.8

The suggestion is that foreign cultures might value STEM 
education more than Americans, and that STEM fields are 
difficult and less appealing to US students. In a recent panel, 
Professor Dan Hastings from MIT said “STEM is hard, that is 
ok. It can also be fun.” To get more US citizen students into 
the STEM pipeline, the United States may need to better 
encourage its young people to enjoy that hard work.

Cultural differences are accompanied by decreases in gov-
ernment funding support for R&D, which was reduced at 
the conclusion of the Cold War as part of the Peace Divi-
dend. Government and military focus on global counterin-
surgency after the 9/11 attacks stalled federal commitments 
to basic research in science and technology, in favor of more 
applied developments. These and other macroeconomic 
trends in US R&D investments were accompanied by large 
increases in R&D investments in science and technology by 
other nations, particularly China. 

RECOMMENDATION 3
America has always been a nation built by 
bringing in the best from the world, which 
should remain a path forward today. The 
US government needs to examine how to 
enhance the number of H-1B visas given 
out to foreign students, and endeavor to 
bring them into US industry, academia, 
and select government positions. 

The Economic Landscape of US Education: 
The Impact of Income Inequality

Education is America’s key to establishing an enduring com-
petitive advantage in science and technology. Before invest-
ments in research and development can be considered, the 
United States must reconsider how it invests in young peo-
ple and how it funds education.

Public schools in the United States for kindergarten through 
12th grade (K through 12) are largely funded by local sources: 
county and state. They are funded municipally by revenues 
gathered from property taxes (44% of total funding on aver-
age), and a portion of state tax revenues (income taxes and/
or sales taxes) to account for another 48%, on average.9

Federal funding nationwide amounts to 8% of the sector. 
Public education is more likely to be well-funded in districts 
with valuable properties and in richer states. Conversely, 
schools located in poorer neighborhoods tend to have less 
funding, and those students who may need the most finan-
cial help are less likely to receive it. 
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The model of local financing of schools introduces a feed-
back loop. In the United States, one of the significant con-
tributors to property value is access to “good” schools. 
The National Bureau of Economic Research discovered on 
average that “for every $1 spent on school funding, prop-
erty values increased by around $20.”10 In this case, dis-
tricts that have historically good schools see their fund-
ing increase, which leads to higher property values, which 
leads to more revenues to fund their schools. In Los Ange-
les, for example, homes in a “top-tier” school district sell 
for an average of 79% more than homes in an “average 
school district nearby.”11 This relationship has stratified the 
quality of public education across the country.

New models of financing education may be needed. 
Sometimes municipalities attempt to innovate entirely new 
systems of public education (e.g., charter schools).12  Ulti-
mately, the US needs a quality education system, which 
requires facilities and high-quality teachers. Education is 
costly, but it benefits the nation; the locality; and primarily, 
the educated person.

Private schools and private universities offer choice but 
are largely funded by tuition.13 Elite universities also col-
lect overhead on research, gifts, and endowments. State 
universities receive support from state resources to benefit 
the local population (employment, businesses, etc.). But, 
tuition payments (and room and board payments when 
appropriate) fund the administrative operations and edu-
cation processes of private schools and universities.

The price of college in the United States has exploded over 
the last few decades. One analysis shows a constant dollar 
increase by a factor of 2:1 in average college costs from 
1990 to 2021.14 In a recent survey, 37% of American college 
applicants and 64% of parents, estimated that the costs of 
college are more than $100,000.15 Total costs of attend-
ing a 4-year college can vary widely, but students who do 
not pay full fare are expected to take on loans. The current 
average federal student loan debt balance is more than 
$37,000, totaling over $1.6 trillion across Americans.16 The 
amount of debt that a post-secondary student will incur 
depends greatly on the type of university, living arrange-
ments, and the educational requirements of the program. 
If more than four years are required, as is often the case for 
STEM majors, the education will be more costly. The debt 

burden is not good for America,17 but that is a separate 
issue. Financing models that encourage those who are not 
extraordinarily wealthy to take on debt greatly impact the 
choices made by US students contemplating their post-sec-
ondary education, which can contribute to a decline in US 
STEM talent.

US funding for education and incentives that influence 
student choice are important issues that need addressing. 
We also need to consider why college costs have risen so 
drastically.

One factor is the transition of higher education towards a 
competitive market landscape, where schools are incentiv-
ized to market themselves as something “more” than an 
educational institution. Athletics, amenities, and adminis-
trative support have broadly evolved into the leading fac-
tors in many students’ decision for enrollment—including 
the cultural artifact of the “college experience.” Given the 
choice between a school that offers a quality education and 
a school with an inferior quality but a “once in a lifetime 
social experience,” many students choose the latter. This 
trend is counter to the United States’ goal of cementing an 
enduring competitive advantage in STEM.

Another factor is that colleges and universities are incen-
tivized to prioritize students that can pay full tuition. Today, 
the US can claim many world-class academic institutions 
that attract students from around the world who are able 
to pay full tuition. While most colleges state that they are 
“need-blind,” drawing on a worldwide pool of applicants 
reduces the need to offer discounting (through scholar-
ships) to qualified applicants. Since foreign students do not 
always stay in the US,18 this also undermines the country’s 
competitive advantage in STEM fields.

State funding for public universities has declined in the 
past decade by roughly 13% per student,19 motivating tui-
tion increases. Ironically, the availability of student loans 
contributes to tuition increases by removing some pressure 
for cost containment.20 Increased access to higher educa-
tion, in part due to the availability of low interest loans,21 
has increased demand on universities overall, which also 
results in higher tuition rates.
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SCHOLARSHIP FOR SERVICE
 
A number of “scholarship for service” programs have 
funded the higher education of US students. In this 
model, the sponsor pays tuition, board, books, and 
even a stipend, in exchange for a guaranteed number 
of years of service to the sponsor following gradua-
tion (typically in a ratio between one or two years of 
service per year of sponsored education). In the US 
national security domain, the Department of Defense 
(DoD) has the Reserve Officer Training Corps program 
and the Science, Mathematics and Research for Trans-
formation (SMART) program.22 These programs pro-
vide military officers and civilian scientists and engi-
neers advanced education for future employment in 
the DoD. The FBI and the intelligence community have 
similar programs. These types of programs could be 
expanded to other government agencies and indus-
try. In addition to student service commitments, tax 
incentives or credits could further motivate industry 
to adopt such programs. In so doing, the nation could 
reduce future debt burdens and produce more scien-
tists and engineers.

The Cultural Landscape of US Education

The prevailing wisdom, historically, is that one must go to 
a university and obtain a degree to be “successful” in life. 
This perception is true, based on many studies of lifetime 
earnings.23 As a hiring filter, employers increasingly require 
a bachelor’s degree.24 The return on investment provided 
by a university degree is complex, and not universally 
accepted as a great deal; wage growth has been stagnant, 
and unemployment rates among recent graduates have 
been high.25 Still, an undergraduate degree is undoubtedly 
a good deal—for both the student and the nation.

Whether due to perception or requirements, college enroll-
ments increased rapidly from 1970 to present. In 1970, 7.4 
million students were pursuing higher education in the US, 
and by 2010 this number had increased to 21 million.26 
(Interestingly, the number has plateaued since, with the pan-
demic causing further “great interruption” in enrollments.27) 

Motivations for higher education are changing. In one sur-
vey, over 86% of college first-years believed that “[being] 
able to get a better job” was “very important” in their deci-
sion to attend college, compared to the fewer than 60% 
that claimed “[preparing] myself for graduate or profes-
sional school” was equally as important.28 Similarly, accord-
ing to this same study from UCLA, the rate of respondents 
saying that “to make more money” was “very important” 
increased from 44.5% from 1971 to nearly 73% in 2014.29 
These trends in survey responses highlight a cultural shift 
towards an emphasis on financial rewards. Students may be 
highly motivated to pursue post-secondary education, but 
not to major in difficult STEM fields.

An education in STEM does not always translate to employ-
ment in STEM. The US Census Bureau states that out of the 
50 million employed college graduates ages 25-64 in the 
US in 2019, “37% reported a bachelor’s degree in science 
or engineering, but only 14% worked in a STEM occupa-
tion.”30 Graduates in STEM fields are in high demand, but 
not necessarily for STEM occupations. Management con-
sulting firms and financial institutions seek students from 
elite institutions, observing that the talent pool is small and 
competitive, and “STEM professionals have become an 
integral part of the workforce in the finance arena… .”31 
Exceptional pay and benefits tempt graduates away from 
a career in the sciences to pursue other more lucrative 
opportunities.

The situation is slightly different for international students 
in the US. For visa reasons, foreign graduate students must 
maintain full study loads during school and are less likely 
to be recruited to a non-STEM career if they stay in the US 
with a STEM degree. Perhaps as a result, over half of US 
engineering and computer science workers with a graduate 
degree are foreign-born (see Figure 4).32 

The cultural milieu in the United States has evolved sig-
nificantly over the last half-century. Against the backdrop 
of the numerous economic pressures facing students and 
young people in the United States, there is cause for 
concern about the future of American competitiveness. 
Although rectifying the current situation is a monumental 
challenge, it is a challenge worth undertaking.
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The Factors for Migration Away  
from STEM Fields

In a recent forum of the Potomac Institute’s Global Com-
petition Project, panelists suggested reasons as to what 
could be driving the migration of American students to 
non-STEM fields.

The overriding reason, as suggested, is financial. The over-
whelming cost of attending college in the US incentivizes 
students to pursue degrees outside of STEM, or to drop 
from STEM programs after beginning them, because they 
“cannot afford to fail and retake courses.” Regardless of 
their talent or primary school experience, a STEM degree 
may be perceived as too risky given the burden of debt that 
will cripple them financially. They pivot their focus towards 
a subject area they believe is “easier” and less risky. One 
study in 2019 found that over 60% of college students 
dropped out of their STEM programs.33 It is reasonable to 
suggest that students feel more likely to graduate with a 
degree in social sciences, humanities, and business.

Another factor for the migration away from STEM fields, 
brought up by the panelists, was the practice of intro-
ductory courses whose purpose is to “weed-out” weaker 
students. The suggestion is that STEM 101 courses are 
not designed to best prepare students for matriculation 
through their major but are designed to optimize the allo-
cation of educational resources to a select few.34 The selec-
tion process may be counter to the United States’ goal of 
an enduring competitive advantage in STEM fields. 

Class size may be another factor. In STEM disciplines, espe-
cially in introductory courses, large lecture-hall classes can 
be common, ranging in size from 100 to 500 students—with 
extremes of up to 1,000 students.35 Quality and interactivity 
suffer, for efficiency. A 2021 study of the impact of class size 
on college students in the UK noted that large class sizes 
are “associated with significantly lower grades.”36 Talent in 
STEM may be lost as students migrate to other fields with 
more social experiences.

Source: NSF, National Science Board, Science & Engineering Indicators 2019, Science and Engineering Labor Force, Figure 3-24.  
Data from National Center for Science and Engineering Statistics, National Science Foundation, National Survey of College Graduates (NSCG), 2017.

Figure 4. Foreign-born Individuals in Science and Engineering Occupations in US by Education Level.
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Employment opportunities and starting salaries play a role. 
Today, the highest paying tech jobs (those positions that 
demand STEM degrees) are in advertising optimization, 
social networking, workplace efficiency, quantitative invest-
ment analysis, payments processing, and other data ana-
lytic applications.37 These businesses generally do not con-
tribute to the US’ competitive advantage in STEM, but they 
attract investments from venture capital and, thus, recruit 
the best STEM graduates.38 

Today, many of the high-tech start-up companies that 
employ recent STEM graduates aim to be acquired by 
larger established companies. The start-up companies are 
not in the mold of large research enterprises of old, such 
as Bell Labs, Xerox Parc, Intel, or an early Apple. Instead, 
the start-ups focus on “quick wins” and demonstrations, 
and often do not persist at knowledge development after 
acquisition. STEM employees then migrate to other start-
ups, or non-STEM endeavors.

To be competitive in the future economy of the world, the 
US cannot afford to have STEM students migrate to other 
fields and endeavors before their talent is discovered. 
The nation needs a larger cohort of students to matricu-
late through STEM education and to become gainfully 
employed in technology development for societal pur-
poses to participate in the future economy.

A Braided River Model of Education

Today, education and career development in the US can be 
represented as a pipeline, i.e., a linear progression through 
elementary, secondary, undergraduate, and graduate edu-
cation into a career. This model has been under question 
for some time. 

An Economist magazine special report from 2017 proposes 
a changed viewpoint in the educational model.39 Contrary 
to time-based block learning, where a person attends pro-
grams for a fixed number of years, the changed viewpoint 
constitutes a more “continuous learning” model. Many 
career fields operate this way already, for example, med-
icine, law, engineering, and accounting. In these fields, 
more experiential learning occurs up front with frequent 
refreshers, updates, and certificate credentials throughout 
a career. 

This new model may be thought of as a braided river model 
(Figure 5), as envisioned by authors of a recent EOS article 
on STEM workforce development.40 Continuous learning 
serves as an analog for the way we can view a typical career, 
with an “inclusive, responsive, and modern career devel-
opment” process. The concept is to allow individuals to 
move along and in between multiple entry points through 
a STEM career, in distinction to a time-dictated “pipeline” 

Figure 5.  
Illustration of the  
“Braided River  
Education Model  
for STEM.” 

Credit: Jennifer Matthews via EOS.org.

Printed with permission.  
EOS, Reimagining STEM 
Workforce Development 
as a Braided River.
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that has only one main entry point, namely higher edu-
cation. Partnerships among academia, government, and 
industry could allow for multiple entry points into STEM at 
any readiness level. 

The model implies a very different approach to educational 
investments and funding. Much of the advanced edu-
cation becomes the shared responsibility of the student 
and employer. Employment models such as the Military 
Reserve Officer Training Program and SMART (see Schol-
arship for Service insert, page 25) make tuition payments 
for advanced education. The GI bill has supported numer-
ous college educations. Other scholarship and tuition pay-
ment service programs might accompany careers outside 
of the military. Government service might include student 
loan payments in pre-tax dollars. Mentorships, training pro-
grams, academic courses, and deployment mobility could 
provide greater freedom for people of all ages and career 
stages to pursue lifelong STEM careers and to contribute 
to US competitiveness in the future economy. Removing 
current disincentives for STEM development and replacing 
them with motivations and opportunities would require a 
major shift in investments in education and the associated 
funding models. 

Conclusion

The United States should strive to expand its leadership 
on the world stage in science and technology. In the past, 
its position as the eminent leader in these fields provided 
a historically unprecedented quality of life for the average 
citizen and has been the foundational building block in its 
provision of national security. Policy-driven economic pres-
sures should not be the reason that the United States loses 
its global competitive advantage. The US government 
needs to address the economic underpinnings of edu-
cation to build a foundation for an enduring competitive 
advantage in STEM.

At the base of technological competition are people—the 
scientists, mathematicians, data analysts and engineers 
that drive the technological progress engine. If the US is 
to reestablish an enduring competitive advantage in STEM 
and technology, national education process reforms will 
be needed. Serious reconsideration of the federal govern-
ment’s relationship with both the private sector and state 
and local education will be required. The United States 
has the talent, universities, laboratories, and infrastructure 

to succeed, and to lead the world in technology devel-
opment through superior research and science. However, 
disincentives and barriers to effective career development 
through STEM education must be overcome. Investments 
in education and career development within US enter-
prises of the young, talented, and motivated are neces-
sary to establishing an enduring competitive advantage in 
science and technology.
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Introduction

Semiconductors come in various flavors—logic, analog, sen-
sors, memory, and others. While all play important roles in 
modern electronic systems, the insatiable demands of today’s 
aptly named “data economy” make memory one of the most 
critical. Everything from data centers to communication net-
works to cellphones are dependent on large amounts of mem-
ory to safely store the information on which we rely. And while 
ongoing shortages of critical components remind us of the 
importance semiconductors play in our consumer products, 
we cannot take for granted the critical memory devices that 
make our world of instant information possible.

The US semiconductor Industry is at an urgent inflection point. 
Geopolitical tensions are shining a light on the growing risk 
from decades of declines in US semiconductor manufacturing, 
eroding from 37% of worldwide capacity in 1990 to just 12% 
today.1 Efforts are underway to explore how the United States 
can revitalize growth in onshore, sustainable semiconductor 
production, using the same kinds of incentives that continue to 
tilt the playing field towards Asia.2 

Semiconductor memory has been at the center of this maelstrom 
for decades. While less visible than the semiconductor logic sec-
tor, reliable access to secure memory technology is critical to the 
US economy and national security.

A glance at nearly any printed circuit board will reveal a sea of 
memory packages, both DRAM (traditional “fast” main mem-
ory) and NAND (“storage” memory). Each package often con-
tains multiple stacked chips, most often making memory the 
largest ingredient of system silicon. For example, in an aver-
age cell phone, over half of the total silicon area is memory.3 
Data center servers now resemble large memory buffers—lead-
ing-edge machines can hold the equivalent of nearly three full 
300mm wafers of DRAM and more than five of NAND.4 And 
memory requirements continue to increase rapidly. 
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Five decades of intense, globalized competition and 
asymmetric state-sponsored subsidies have led to a 
hyper-competitive oligopoly (see History of the Semi-
conductor Memory Industry sidebar). Today, Samsung of 
South Korea commands roughly double the market share 
of the two next largest suppliers: SK Hynix (also of South 
Korea) and Micron Technology (of the US). These three 
companies together comprise 94% of DRAM revenue and 
60% of NAND revenue.14 The notables in the remainder 
are all single-technology NAND providers: Kioxia Mem-
ory of Japan (spun out from Toshiba Corporation in 2018); 
Western Digital (arising from their 2015 purchase of 
SanDisk and sourcing NAND from the same fabs as Kioxia 
in Japan); and Solidigm, the previous NAND operation 
of Intel (recently acquired by SK Hynix, however not yet 
consolidated, with fab operations in Dalian, China15). The 
most recent entrants of note are NAND-focused Yangtze 
Memory Technologies (YMTC), in production with com-
petitive 128-layer 3D NAND,16 as well as the DRAM-fo-
cused ChangXin Memory Technologies (CXMT),17 both 
funded by a mixture of Chinese private equity and gov-
ernment sources including “The Big Fund.”18,19

The concentration of semiconductor fabs in Asia is even 
more extreme for memory than other semiconductor 
segments (see Figure 3). Not a single advanced DRAM or 
NAND fab remains outside Asia due to ongoing national 
subsidization, expansions to existing facilities, a stable 
utility infrastructure, and other factors. Samsung and SK 
Hynix operate fabs in South Korea and China, producing 
memory used by their own system products such as cell-
phones, as well as for merchant sales. Even the advanced 
fabs of pure-play memory supplier Micron are exclu-
sively located in Asia, principally by virtue of acquisition, 
joint ventures, and expansion over the years.20 The lone 
300mm memory fab on US soil is operated by Micron 
in Manassas, Virginia, and is focused on production of 
older-generation devices. These more mature devices 
are of growing interest to markets such as defense, auto-
motive, industrial, and medical, that no longer need the 
most advanced, highest density devices.21 

For example, artificial intelligence (AI) applications rely 
on massive stores of captured data residing in memory 
to hunt for the most critical patterns. Larger databases, 
faster networks, more powerful sensors—innovations at 
the core and edge—all are part of the trend demanding a 
need for more memory. 

However, as the memory industry continues to grow in 
importance, it is also escalating in risk. As one of the first 
semiconductor segments to globalize, it has experienced 
a history of vicious economic cycles and spectacular bank-
ruptcies, where suppliers often find themselves competing 
against entire countries. Decades of asymmetric nation-
state subsidization combined with skyrocketing capital and 
research and development (R&D) requirements have left a 
dwindling number of suppliers, all with challenging mar-
gins and a manufacturing base located almost exclusively 
in Asia. China is now the latest in a long list of Asian coun-
tries to subsidize memory production: The “Made-in-China 
2025” initiative specifically named domestic semiconduc-
tor production as a top priority5 with a goal of protecting 
national security.6 Initial efforts have focused on memory, 
and the emergence of two well-funded Chinese memory 
suppliers in 2019 demonstrates they are serious.7

Accordingly, the challenges of the memory industry pres-
ent an urgent risk to US national security and well-being. 

Today’s Memory Landscape

The memory industry accounts for $154B in sales in 2021, 
comprising 28% of the global $556B semiconductor mar-
ket, and is equivalent in size to the entire category of 
logic (comprising CPUs, accelerators, FPGAs, etc.).8 How-
ever, memory drives a disproportionate 34% of the indus-
try capital expenditures,9 yet with lower average mar-
gins than the logic industry.10,11 The vast bulk of memory 
revenue is driven by product sales of DRAM and NAND 
into data centers, cellphones, and PCs, as illustrated in 
Figures 1 and 2.12,13 

Continued page 37.
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Figure 2. DRAM Market Segments

DRAM Market Monitor Q2 2022. www.yolegroup.com © Yole Dèveloppement 2022  
Reprinted here with permission from Yole Group.

Figure 1. NAND Market Segments

NAND Market Monitor Q2 2022. www.yolegroup.com © Yole Dèveloppement 2022  
Reprinted here with permission from Yole Group.

Based on Yole Q1 2022 DRAM/NAND Market Monitors. Excludes fabs focused on mature/legacy 
technologies Solidigm included with SK Hynix based on acquisition. 

Figure 3. Advanced DRAM and NAND Memory Fabs 
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History of the Semiconductor Memory Industry

The commercial memory industry dates back to the early 1970s, 

when Robert Noyce and Gordon Moore, in the first seminal years 

of Intel, helped spur the invention of the first commercially via-

ble “Dynamic Random Access Memory” (DRAM).22 This 1-kilobit 

DRAM design was Intel’s first mass-produced product, conceived 

as a small but fast working memory between a computer’s pro-

cessor and the magnetic core main memory of the time, taking 

advantage of the recent advent of silicon metal oxide semicon-

ductor (MOS) transistor technology.23 The DRAM concept quickly 

evolved thanks to improving yields, key technical advancements 

from Bob Dennard of IBM24 and others to reduce the size of the 

cell, and the dawning realization that silicon transistor densities 

had a path to continue growing exponentially at a stable cadence 

(the birth of Moore’s Law). 25,26

The memory industry thus became one of the key enablers of mod-

ern computing systems, helping to drive the overall semiconductor 

industry. Through decades of brutal, boom/bust cycles as succes-

sive Asian countries sought to dominate the market, it has never 

been an industry for the faint of heart. The importance of mem-

ory has only continued to grow, supplying the linchpin components 

critical to powering today’s data economy.

The 1970s saw a dramatic expansion in DRAM densities, growing 

to 64 Kbit designs by the end of the decade. Demand increased 

with the continued growth in corporate computing and the phase-

out of commercial magnetic core memories. The decade also saw 

an explosion of DRAM manufacturers, with system companies 

such as IBM, AT&T, and Motorola developing DRAMs for their 

own end systems, as well as several merchant suppliers joining the 

party, such as Texas Instruments, Mostek, and National Semicon-

ductor. Standardization of the DRAM interface helped lower the 

market barriers to entry, while the easily testable, repeating pat-

terns of DRAM arrays provided an easy gateway product to prove 

out production lines for more sophisticated products.27 

The 1980s saw the memory market become both international 

and commoditized, with the rise of the personal computer (PC) 

and DRAM manufacturing by several well-funded Japanese com-

panies driving cost competition. By the end of the decade, com-

panies such as Toshiba, NEC, and Hitachi dominated the DRAM 

market, forcing out most US suppliers. 28 Intel exited in 1984, as 

well-documented by Intel CEO Andrew Grove.29 IBM continued 

large-scale internal production for their own systems, while other 

merchant suppliers such as Texas Instruments pursued overseas 

operations with the help of partner cost-sharing and subsidies.

Urgent congressional inquiry into the declining competitiveness 

of US semiconductor manufacturing drove the start of Sematech, 

originally conceived as a national memory production center, but 

quickly re-chartered as an R&D consortium, initially led by Robert 

Noyce. Further calls for protections around US manufacturing 

culminated in the US Japan Semiconductor Trade Agreement of 

1986, spurring Japan to significantly reduce DRAM production. 

However, with most US suppliers already having left the business, 

and with DRAM demand soaring, the moves paradoxically led to 

a DRAM shortage that left many system companies unable to pur-

chase sufficient supply.30,31

Throughout the 1990s the demand for memory continued to sky-

rocket, driven increasingly by the exploding PC market and the 

“Win-Tel” PC cycles of Microsoft and Intel, demanding an ever-

higher level of internal memory with each new product release 

and resultant improvements in computing power. The decade 

also saw a continuation of hypercompetitive boom-bust cycles. 

Wild price swings were caused by relatively modest supply and 

demand imbalances coupled with 1) the time lag to bring on new 

capacity when needed (due to fab construction lead-times), and 

2) the unwillingness to idle capacity when not needed (due to 

high fixed-cost investments). 

The decade also saw the emergence of South Korea as the new 

DRAM manufacturing powerhouse, with Samsung, Hyundai, and 

Lucky Goldstar supplanting many of the Japanese leaders by the 

end of the decade. Hyundai and LG operations merged to form 

Hynix after the 1997 South Korean financial crisis.32,33 Multiple 

Japanese entities exited DRAM production, with NEC and Hita-

chi combining operations into a pure-play DRAM spin-out in 1999 

named Elpida Memory. Texas Instruments likewise retreated from 

the memory market in 1998 by selling its DRAM operations to the 

United States’ Micron Technology.34,35

The 2000s saw multiple Taiwan vendors enter the market,36 and 

a push from 200mm to 300mm wafers, requiring massive capital 

investments for brand new fabs and equipment. The 2001 tech 

crash and the 2008 financial crisis drove even wilder market gyra-

tions, with significant industry losses. Investigations of price fix-

ing during the 2001 downturn led to guilty pleas by all five of the 

largest international memory vendors.37 In 2009, Qimonda of Ger-

many declared bankruptcy after multiple bail-out packages had 

been extended, drawing an end to Europe’s DRAM ambitions.38 

A new form of memory called NAND Flash was commercialized 

in the 2000s, loosely descended from the original Erasable Pro-

grammable Read-Only Memory (EPROM), another early Intel 
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innovation.39,40 Although slower speed than DRAM and with each 

cell able to be rewritten only a handful of times, NAND devices 

offer much larger densities than DRAM and can retain data with-

out power (i.e., non-volatility). NAND flash eventually overtook 

large portions of the hard-disk drive market in the form of sol-

id-state drives (SSDs). NAND memory plays a critical role in PCs, 

cellphones, and server systems, occupying a layer of the “memory 

hierarchy” between large but slow hard disk drives, and the fast but 

low-density DRAM main memory.41,42

The 2010s saw the slowing of the PC market.  Demand for DRAM 

and NAND continued, however, driven by the consumer cellphone 

market and the enterprise datacenter market. By this point, the 

increasingly difficult technology transitions required massive annual 

R&D investments similar to those in the semiconductor advanced 

logic industry. Combined with the large capital requirements, only 

the largest operations were able to survive, effectively leading to 

an oligopoly.43,44 Samsung retained dominant market share in both 

DRAM and NAND, expanding beyond South Korea into mainland 

China for NAND production, and benefitting from in-house con-

sumption of memory thanks to its large cellphone and systems 

divisions. Similarly, Hynix of South Korea expanded production in 

China with their DRAM facility in Wuxi. After defaulting on its loans 

in 2009, Hynix was put up for sale and subsequently rescued by the 

SK Group, which, at that time, was the third largest of the South 

Korean family-owned businesses. After a Japanese government 

bail-out in 2009 and declaring bankruptcy in 2012,45 Elpida Mem-

ory was purchased in 2013 by Micron, now the only combined 

DRAM and NAND pure-play operation left in the world.46 

China’s announcement in 2015 of the “Made in China 2025” pol-

icy initiative made clear however that both DRAM and NAND 

were of significant interest to Chinese national security, and that 

the 2020s would see the rise of indigenous Chinese memory pro-

duction. Indeed, by the end of the decade, two Chinese mem-

ory companies had come forward—DRAM-focused CXMT and 

NAND-focused YMTC.47 

DRAM and NAND densities have continued to increase expo-

nentially, achieving single component densities of 16 Gigabit 

and 512 Gigabit respectively by 2022. Both technologies pio-

neered vertical fabrication well before microelectronic logic 

devices, in DRAM’s case with a foray into deep substrate trench 

capacitors, and eventually with all vendors settling on narrow 

skyscraper-like “stacked” capacitors.48 In the case of NAND, the 

push for more density first drove multiple bits per cell, leading 

in some cases to mere single digit numbers of stored electrons 

distinguishing between stored data states. Then NAND memory 

devices also “went vertical,” with the NAND cells assembled 

into long vertical chains, increasing density even further, and 

helping surmount noise issues that had stalled any continued 

scaling in planar structures.49

Chart Courtesy of Jim Handy, Objective Analysis www.objective-analysis.com.

Figure 4. DRAM Market Share 1970-2020 
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Starting in the 1980s, it has been a recurrent drumbeat that mem-

ory “likely can only scale one, possibly two more generations.”50 

These concerns also helped spur a continual search to find “the 

holy grail” of memory technology—a new memory mechanism 

that could accomplish a better set of tradeoffs in cost, scalabil-

ity, speed, endurance, and non-volatility, without relying on elec-

tric charge as the storage mechanism. Massive R&D efforts and 

dozens of dedicated startups were committed to finding winning 

alternatives. Many technology concepts appeared in research 

papers within industry journals. A smaller number made their 

way to actual prototypes and an even smaller number made it to 

low-volume production, but very few made it to levels of produc-

tion that could sustain commercial interest for stand-alone com-

ponents. While the future scaling of both DRAM and NAND is as 

challenging as ever, it is a testament to the strength of the original 

concepts as well as continuing innovation over the decades that 

DRAM and NAND have kept barreling through every prediction 

of imminent demise. 

Despite the technical success of the memory industry, and the 

increasingly critical role memory plays in electronics, the eco-

nomics of the industry have always been severely challenging. 

The industry earned essentially zero economic value from 1996 

to 2012,51 due to significant asymmetric national investments 

by multiple Asian countries. Consolidation, as well as the grow-

ing technical and financial barriers to entry, helped somewhat 

stabilize the industry; However, decades of turmoil have left a 

production base for advanced memory located exclusively in 

Asia, and China’s investments are coming on strong, driving 

countries such as South Korea to double-down on semiconduc-

tor incentives benefitting indigenous memory suppliers.52,53,54 

The current price tag for a new fabrication plant is around $15B 

and growing, with an ongoing requirement for any serious ven-

dor to invest multiple billions annually both in R&D and ongo-

ing fab upgrades.55  Storm clouds are indeed growing again 

for memory. 
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Labor cost is no longer a major factor in locating fabs, 
given the high levels of automation common to all 300mm 
semiconductor operations. However, competitive cost 
pressures have driven a need for massive scale. New mem-
ory fabs today aim for minimum capacities of 100,000 
wafers per month, which is significantly larger than most 
logic fabs. This drives capital and construction costs well 
past $15B for a new facility.56 At that scale, and with chal-
lenging and volatile industry margins, organic funding is 
unrealistic. Thus, a major consideration in the industry is 
access to investment incentives. 

The investment for a new fab is so large that any delay to 
the project can bankrupt the supplier. A new fab must be 
pulled into production as fast as possible to start gener-
ating cashflow. Suppliers drive fast ramps and minimize 
risk by focusing the fab on high-volume customer-qual-
ified products. Speed of permitting and fab construction 
are also crucial. Countries such as South Korea, China, Tai-
wan, and Singapore help speed time-to-market, offering 
pro-business regulatory climates, as well as agencies that 
help with permitting and construction fast-tracking.57,58

Once a memory fab is operational, it must continually be 
recapitalized with new equipment to produce the most 
advanced technology, upgrading much more frequently 
than fabs in other semiconductor sectors. Ongoing annual 
upgrades can easily cost over a third of annual revenue.59 
While a steep bill to pay, especially in market downturns, 
these investments are necessary to stay competitive as 
multiple bankruptcies over the decades can attest. 

The size of both the initial and ongoing fab investments, 
as well as China’s leap-ahead investments in memory have 
driven other countries to continue subsidies and favor-
able tax treatment—notably South Korea, home to both 
Samsung and SK Hynix. In 2021, South Korea announced 
a suite of capital, R&D, and other incentives for domestic 
semiconductors manufacturers meant to spur total invest-
ment of over $450B through the next decade.60 

Research and Development in the  
Memory Sector

The need for advanced higher density memory pushes sup-
pliers to the edge of Moore’s Law, all to continually pack 
more memory cells on each chip. This is notoriously costly 
R&D that is growing more prohibitive every year, requiring 

investment in new prototype equipment and dedicated 
cleanrooms as established technologies run out of steam. 
(This is true for all semiconductor sectors, with only a small 
handful of suppliers able to afford advanced R&D and tool-
ing.)61 Experiments, short-loop trials, and eventually full-
flow prototype wafers must be refined through multiple 
iterations, pushing the limits of advanced photolithogra-
phy, etching processes, and new materials, all driven by 
brutally competitive time-to-market pressures. While both 
advanced memory and logic share the same mandate to 
continuously shrink feature sizes, the unique specialization 
of each field limits opportunity for synergy or cost-sharing.62

Memory companies also invest R&D in product and sys-
tem design enhancements to optimize for applications 
such as graphics, AI, and communications. Reducing 
power consumption is a constant priority, attempting 
to offset the added power from exponentially increas-
ing chip densities and faster interface speeds. New data 
center interface standards such as Compute Express Link 
(CXL) allow larger banks of various types of memory to 
elegantly operate outside of traditional main memory 
slots.63 Active research is attempting to move portions of 
logic into the memory fabric, to help reduce data move-
ment in systems optimized for artificial intelligence, thus 
saving energy and reducing system bottlenecks.64 Innova-
tions in solid-state drives (SSDs) help deliver large perfor-
mance gains to data centers and PCs, integrating dozens 
of NAND components together with logic controllers and 
firmware. These memory sub-systems also highlight the 
unique security risk of information storage, and the need 
for secure, high-integrity memory modules.65 

Even packaging processes, once considered relatively 
mature, now require significant investment in both R&D 
and capital. Applications such as cellphones and “wear-
able” devices must pack multiple memory devices close 
together to achieve small form-factors. Techniques placing 
advanced DRAM and NAND packages directly on top of 
the processor, as well as stacking thinned layers of NAND 
into a single terabyte package are already in high volume 
production.66,67 DRAM was one of the first technologies 
to achieve “3D” packaging, specifically for data center 
AI applications. Such “high-bandwidth memory” pack-
ages route signal connections through the DRAM stack 
itself, using wafers that have been thinned to less than the 
width of a human hair, and thousands of carefully aligned 
“Through-Silicon-Vias” that pass the signals through the 
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stack, buying speed and reducing power.68 Many of these 
advanced packaging processes must be performed inside 
the fab itself, belying the perspective that packaging is 
“old technology.” 

Taken in aggregate, the investment required to enable 
next-generation technology in the memory industry (add-
ing together annual R&D and capital expenditures [capex] 
as a percentage of revenue), is higher or equal to other 
sectors, which also feature significantly larger margins. For 
instance, Micron (as the last remaining pure-play DRAM/
NAND supplier), invested on average 50% of annual reve-
nue into R&D and capex over 2019-2021, with an average 
operating margin of 23% over that time, and with all capi-
tal reinvested in existing fabs. By comparison, Texas Instru-
ments, which is a leading US provider of analog compo-
nents, invested 18% of revenue over the same time, with 
a 3-year operating margin of 44%. TSMC, a leading logic 
foundry based in Taiwan, invested a comparable 53% of 
revenue (of which a portion went to construction of new 
fabs) but with 40% operating margins.69,70 While point 

comparisons across sectors always have caveats, the results 
highlight the steep investments required in the memory 
industry, despite thinner profit margins. 

The Need and the Way Forward 

Memory is not only more important than ever, but more 
difficult than ever. To be competitive, suppliers must con-
tinually invest larger sums in capital and R&D, despite 
challenging margins. The industry’s advanced fabs are all 
located in Asia, with several in China already and more 
coming, and with the biggest suppliers using large por-
tions of their memory production in their own systems. 
Organic affordability of new memory fabs is no longer fea-
sible. The global playing field is not level, due to ongo-
ing asymmetric subsidization in Asian countries that have 
recognized memory’s importance. Absent appropriate 
attention, the US risks loss of access to the ever-grow-
ing amounts of secure memory that is foundational to the 
nation’s critical infrastructure, and overall economic and 
national security health.

Recommendations 

1. ELEVATE THE PRIORITY OF ADVANCED MEMORY PRODUCTION  
on US soil as a critical national security priority 

2. EXTEND INVESTMENT TAX CREDITS  
competitive with Asia to drive sufficient domestic memory fab reinvestment

3. EXTEND R&D TAX CREDITS COMPETITIVE WITH ASIA  
to help defray the exploding costs for development of next-generation memory technology

4. STREAMLINE THE SEMICONDUCTOR FAB REGULATORY PROCESS  
to ensure competitive memory fab construction “time-to-market”

5. PROVIDE INCENTIVES FOR ONSHORE MEMORY PACKAGING CAPABILITIES  
necessary to complete a secure supply-chain
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We thus propose a set of recommendations meant to 
ensure sustainable US access to advanced memory suffi-
cient for national security.

These recommendations would help ensure US national 
and economic security are not at risk from multiple 
decades of asymmetric offshore incentives. While many 
argue against any form of active US industrial policy, 
these proposals merely level the playing field with coun-
tries that have methodically grown thriving semiconduc-
tor manufacturing environments over decades, using 
these same incentives for their domestic suppliers.71 
And a thriving semiconductor fabrication and R&D base 
drives significant, well-documented benefits in high-
value job creation, driving domestic economic activity.72 

These same incentives would also benefit other semicon-
ductor sectors. In fact, several are now starting to con-
front the risks from similar asymmetric offshore incen-
tives.73 However, memory is the most urgent sector, 
given its recognized importance as the key enabler of 
the data economy, the exploding investments required 
to remain competitive, and the results from a long his-
tory of distortions. The following are comments on each 
recommendation in the context of the memory sector.

1.  Elevate advanced memory production on US soil as 
a critical national security priority. 

The US should prioritize advanced memory production 
on US soil as a key priority of incentives such as those 
contemplated in the CHIPS bill. Secure production of 
memory (DRAM and NAND) in sufficient quantities for 
US critical infrastructure needs is crucial for enabling our 
digital systems. Advanced memory production remains 
under threat from ongoing nation-state subsidies that 
continue to tilt the playing field outside the US. The US 
cannot tolerate risk to supply-chain disruptions of such 
an important ingredient of critical infrastructure. Sup-
plies of other semiconductors from on-shore facilities 
will not matter if supplies of memory chips are limited. 

2. Extend investment tax credits competitive with 
Asia to drive sufficient domestic memory fab 
reinvestment. 

Such credits are critical to the memory sector, enabling 
crucial ongoing reinvestment in existing fabs and help-
ing to ensure that new fabs can be built when market 
conditions warrant. While proposed legislation such 
as CHIPS could provide a “jump-start” to competitive 
US manufacturing, the total budgets are insufficient to 
offer grants to more than a few firms for new fabrication 
facilities, and will not help with the required ongoing 
upgrades. Investment tax credits would have the added 
advantage of incentivizing “skin-in-the-game,” benefit-
ting companies only in proportion to the investments 
they make in US manufacturing operations. Such incen-
tives are common in Asia; in fact, South Korea’s recent 
announcement highlighted 20% tax credits for all capital 
invested in new fab construction.74 

3. Extend R&D tax credits competitive with Asia to 
help defray the exploding costs for development of 
next-generation memory technology. 

The memory industry requires an urgent level of innov-
vation due to the slowdown in Moore’s Law, while R&D 
necessary for next-generation memory fabrication pro-
cesses becomes ever more expensive. Accordingly, tax 
credits for R&D activity in the US are needed to remain 
competitive against Asian countries that offer R&D incen-
tives to their own domestic semiconductor manufactur-
ers.75 These credits help spur the purchase of next-gen-
eration advanced semiconductor tools—an industry the 
US still leads.76 The institution of a competitive US semi-
conductor R&D tax credit would also send the message 
that semiconductor manufacturing is welcome in the US 
again, helping revitalize critical engineering training pro-
grams at US colleges that have withered as these jobs 
moved overseas. As a reference, South Korea’s recently 
announced program highlights R&D tax credits of 40% 
(up from 30%), and provides benefit primarily to the 
region’s indigenous memory chip suppliers.77 
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4. Streamline the semiconductor fab regulatory 
process to ensure competitive memory fab 
construction “time-to-market.”  

While new fab “time-to-market” is important to all semi-
conductor manufacturers, it is crucial to memory sup-
pliers. Costs are at least $15B for a competitively sized 
memory fab, which carries the risk of insolvency if any 
delays forestall production. The US must streamline the 
regulatory process for new US semiconductor fabs to be 
competitive with fabs achievable in Asia. The US Depart-
ment of Commerce has published an informative brief 
acknowledging the issue and proposing a set of recom-
mendations.78 Without waiving necessary regulation, the 
United States needs a fast-track permitting process for 
domestic semiconductor fabs to inject urgency into the 
maze of bureaucracy currently navigated when bringing 
a semiconductor plant to fruition.79  

5. Provide incentives for onshore memory packaging 
capabilities necessary to complete a secure 
supply-chain.

Packaging, and the adjacent steps of printed-cir-
cuit-board fabrication and system assembly, are 
important manufacturing steps for all semiconductors. 
However, they are mission-critical for memory. Mem-
ory components and modules drive significant compo-
nent and board volumes, with a need for cost-effec-
tive packaging across a variety of technologies. The 
US domestic outsourced assembly and test (OSAT) 
industry was an early casualty of offshoring (based 
primarily on labor cost considerations), so that today 
there are few high-volume factories outside of Asia. 
However, this critical last link in the component sup-
ply chain drives significant security and supply-chain 
access risk.80 US wafer fabs would still be under signif-
icant threat of disruption if the wafer and components 
continue to cross the ocean multiple times for finaliza-
tion. As noted above, however, recent trends are inject-
ing more innovation into packaging, but also driving up 
capital requirements. Opportunities exist to leverage 
more advanced automation technologies in this pro-
cess, which makes it more feasible to reshore. The US 
should consider incentives to onshore sufficient OSAT 
capabilities as a national security imperative.

Summary 

The semiconductor memory industry needs urgent national 
attention. While owing its start to US innovation, the indus-
try painfully left US shores as the first case of semiconduc-
tor globalization. Asymmetric national subsidization then 
led to decades of brutal economic cycles that eviscerated 
the supplier landscape, leading to a risky concentration of 
fabs based in Asia, including multiple sites in China. Vicious 
cost pressures require massive ongoing investment. A slow-
ing of Moore’s Law drives skyrocketing R&D costs, challeng-
ing already thin margins. These factors have caused every 
non-US country that still has a domestic memory supplier 
to double-down on subsidies. Meanwhile, China’s indige-
nous producers are coming on strong. Memory suppliers 
are truly competing against the might of entire countries, 
while ever-present market volatility continues. 

While it is not an industry for the faint of heart, these com-
ponents are at the heart of every electronic system on which 
our data economy relies, driving performance benefits and 
the lion’s share of system silicon content. Ensuring the integ-
rity of these components, as well as the security of a via-
ble, complete supply chain—from R&D to final system—is a 
national imperative. The US should urgently work to ensure 
a level playing field for onshore production and develop-
ment of memory, with immediate priority on securing US 
supply for our most critical systems. Although there are no 
quick fixes, implementation of these incentives will make 
the US a viable home for advanced memory manufacturing 
again, ensuring that we have not forgotten about memory. 
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Introduction

Since their development in the 1980s and scale manufac-
turing in the 1990s, lithium-ion (Li-ion) batteries have come 
to dominate the market for rechargeable batteries. The 
increasing use of Li-ion batteries in consumer electronics, 
commercial applications, and national defense applications 
is due to their superior attributes. As the market pushes for 
energy efficient vehicles, the expectation that Li-ion bat-
teries will power electric and hybrid electric vehicles will 
increasingly drive demand for Li-ion batteries.

Li-ion batteries have relatively high energy density (tech-
nically, specific energy) that can vary from 100 to 265 
Watt-hours per kilogram (Wh/kg), and specific power 
of around 250 to 340 Watts per kilogram (W/kg). This 
is better than alternative rechargeable batteries, which 
include lead-acid (Pb-acid), nickel cadmium (NiCd), and 
nickel metal hydride (NiMH) batteries,1 by factors of two 
or more in both measures.

Batteries fall short of the energy content of gasoline and 
other petrochemicals. Gasoline has a specific energy of 
around 12,700 Wh/kg and can deliver high power depend-
ing on size of the internal combustion engine (which, of 
course, is heavy—partially offsetting the advantage of the 
high specific energy of the petrochemical). Batteries are also 
not a match for hydrogen, which has three times the energy 
content of gasoline but requires a heavy storage system.

Given the desire to move away from petrochemicals for 
transport energy, rechargeable batteries are the preferred 
technology. The electrical energy to charge the batteries 
can then be obtained from renewable sources, nuclear 
power, and potentially more exotic energy resources, thus 
making them a zero-emission power source. However, to 
replace petrochemicals, Li-ion batteries must be afford-
able, efficient, convenient, and regularly available.

The Demand for Rechargeable Batteries

The demand for battery storage is exploding. One esti-
mate predicts a 14-fold global increase in demand by 2030 
compared to 2018.2 Worldwide Li-ion battery use for vehi-
cles is estimated to be around 600 GWh by 2025, increas-
ing to over 1,800 GWh by 2030.3 Other applications will 
increase the demand for Li-ion and other battery storage. A 

2022 analysis predicts that by 2026, the annual global bat-
tery market will be worth about $175B USD.4

This demand will largely be met by Li-ion batteries. Auto-
mobiles, light trucks, and other transportation vehicles 
(perhaps including electric vertical-takeoff and landing 
aircraft) will be the largest driver of demand, accounting 
for three-quarters of all Li-ion sales by 2030,5 potentially 
amounting to 1400 GWh by 2030.

Other applications will also demand batteries—phones 
and laptops, smart phones, radios, wearable devices, and 
home and grid energy storage. Most modern defense sys-
tems make use of batteries to power internal electronics. 
Li-ion batteries tend to also be the battery of choice for 
these applications. However, they will be in competition 
with the electric vehicle manufacturers.

Grid storage, which will likely become another market 
driver, does not necessarily require the light weight and 
high density of Li-ion batteries, and yet Li-ion is today the 
battery technology of choice even for grid storage. Grid 
storage demand is predicted to grow twenty-fold from 
2018 to 2030, to 155 GWh of capacity.6 Supply deficits for 
other uses are possible as commercial industries and inter-
national players compete for these supplies.

Meeting the Demand for Rechargeable Batteries

The US Administration’s 100-day review on supply chains, 
published in 2021, recommends incentivizing every stage 
of the US battery supply chain to compete in global markets 
for high capacity batteries.7 The US currently manufactures 
around 6% of the world’s Li-ion batteries, most coming from 
the Tesla-Panasonic plant in Nevada.8 Joint ventures, espe-
cially between automakers and battery manufacturers, will 
build new battery factories that will be operational by 2025, 
with some located in the US.9 The Infrastructure Investment 
and Jobs Act of 2021 contains incentives, 10 including $7B 
over five years, to boost US production of lithium-based 
batteries, with the intent of strengthening the US sup-
ply, as well as infrastructure and charging stations to spur 
demand.11 The US Department of Energy has a “National 
Blueprint for lithium Batteries” with a vision to “establish a 
secure battery materials and technology supply chain” by 

44 © 2022, Potomac Institute for Policy Studies

STEPS 2022, Issue 7



2030.12 The blueprint additionally includes a call for strong 
support for research and development (R&D) to maintain 
technology leadership and improve battery performance. 
The Europeans and (undoubtedly) the Chinese have similar 
research goals.13 The US Department of Defense has rec-
ommended the development of a “defense-specific lithium 
battery strategy.”14

Efforts to assure US production sufficient to meet demand 
will necessarily involve partnerships and agreements with 
global suppliers. The materials used in making Li-ion batter-
ies are sourced from all over the world. Raw ore is extracted 
from disparate mines located throughout the earth. That 
ore is refined into materials and minerals by production 
plants, which are not necessarily co-located with the mines. 
Materials and minerals are incorporated into parts such as 
anodes and cathodes in other plants. Assembly of batter-
ies cells and production of battery packs is performed by 
battery manufacturers. The supply chain is global, and rela-
tively few of these plants, from mining to refining to manu-
facturing, are located in the US.

The US must secure sufficient access at all points in the sup-
ply chain to produce enough batteries for its own demand. 
Creating all-US onshore production for each stage is unlikely 
and uneconomical. But securing supplies through networks 
of allies and partners with global reach is possible.

What are the Prospects for New Battery 
Technologies?

One approach to assuring sufficient supplies of recharge-
able batteries is to develop alternative battery technolo-
gies. Alternatives provide a diversity of supplies and might 
provide opportunities for market leadership. Many research 
projects in industry, academia, and government, including 
government-sponsored research are searching for variants 
and alternatives to Li-ion batteries. The Federal govern-
ment has proposed increases to ongoing R&D to improve 
battery cells.15

Current research projects show promise to increase storage 
capacity and improve performance of batteries, but to date 
are largely laboratory experiments. The chemistry is com-
plicated, and the development and scalable manufacturing 
issues are great.

Li-ion batteries commonly use a lithium based cathode, a 
graphite anode, and a liquid (gel) polymer electrolyte con-
taining a lithium salt. There are many variations possible to 
increase performance and improve cost, safety, and man-
ufacturability characteristics. For electric vehicles, however, 
the near-term need is to improve safety. The electrolyte in 
current Li-ion batteries is a volatile, flammable, toxic liquid 
that facilitates the formation of “dendrites” that limit lifes-
pan and is prone to explosive thermal runaway.
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Accordingly, the next major development in battery tech-
nology will likely be the commercialization of solid-state 
batteries (SSBs).16 SSBs use a solid electrolyte instead of a 
liquid electrolyte, which would make them safer and more 
stable.17 Various materials can be used as a solid electro-
lyte, including certain ceramic materials and solid sulfide 
materials (sulfur in a compound). By virtue of being solid, 
the electrolyte is not volatile or corrosive and will not spill 
if the battery is damaged. However, finding the right com-
bination of materials for the solid electrolyte that still per-
mits high power and rapid charging is challenging. Major 
automobile companies (Ford, BMW, Volkswagen, etc.) are 
investing in battery companies, some of whom are close to 
commercialization of SSBs,18,19,20 with goals of production 
within the next couple of years.

Solid electrolyte layers also permit the use of alternative 
materials for the anode and/or the cathode, which can then 
provide higher storage capacity. Some of the companies 

completing extensive (and difficult) research are seeking 
to double current Li-ion battery specific energy capaci-
ty.21 One possibility is to use thin films of lithium metal 
as the anode, which allows for a much higher theoreti-
cal energy density.22 Commercialization and production 
at scale remain challenging.23 A consortium of universities 
and Department of Energy national labs, called the “Bat-
tery500 Consortium” is working to develop a Li-ion bat-
tery with a lithium-metal anode and 500 Wh/kg capacity, 
and has demonstrated a laboratory lithium battery with 
350 Wh/kg capacity.24 A Japanese research group claims 
a demonstration lithium-air battery with greater than 500 
Wh/kg capacity.25

Lithium-metal anodes might also be combined with cath-
odes made of sulfur instead of lithium cobalt oxide or 
another lithium-containing compound. The primary advan-
tage of a lithium-sulfur battery is that a sulfur cathode can 
incorporate more lithium ions compared to a traditional 
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lithium-compound cathode,26 yielding a higher energy 
capacity per unit weight.27 Sulfur is light, abundant, cheap, 
and more easily sourced than materials such as cobalt and 
nickel used in current Li-ion batteries.28 The US government 
is investing in this technology through Advanced Research 
Projects Agency-Energy (ARPA-E). Industry has shown inter-
est in the approach.29

Another possibility is the use of silicon anodes with a 
solid sulfide-based electrolyte, which provides a theoret-
ical 10-fold increase in specific energy.30 Much of this work 
remains in academic and laboratory investigations31 as they 
address complex issues including electrolyte-anode inter-
actions and silicon anode swelling during charging. Indus-
tries are investigating the approach and multiple research 
companies are working on the problems.32

The extreme supply issues with cobalt have led to signif-
icant interest in developing Li-ion batteries that do not 
need cobalt. Getting rid of the cobalt (and nickel, which 
is often used in cathodes as well) involves research using 
sulfur, iron, manganese, or other substances. China’s CATL 
company has hinted that Li-ion batteries can be devel-
oped without cobalt or nickel, but performance specifica-
tions are lacking.33

Finding an alternative to lithium is difficult, because 
lithium is hard to beat. Sodium is directly below lithium 
on the periodic table and has similar chemical prop-
erties, meaning that sodium-ion batteries are a possi-
bility. Sodium is significantly more abundant than lith-
ium,34 and is more stable at extreme temperatures.35 
However, sodium-based batteries operate at a lower 
voltage and sodium is heavier than lithium. There are 
nonetheless commercial investments into sodium-ion 
variants.36 Exploration of magnesium as an alternative 
to lithium is also ongoing.37

Other early-stage investigations include nickel-hydro-
gen batteries, which have demonstrated 20,000 charge 
cycles38 compared to customary 300-500 cycles for Li-ion 
batteries.39 However, they weigh three times as much as 
Li-ion batteries per unit of storage. Metal-air batteries con-
sist of an air cathode and a metal anode made of iron, zinc, 
aluminum, or other abundant metals.40 They have a high 
theoretical energy density by volume; however, they, too, 
are much heavier than Li-ion batteries.41 

Another alternative is redox flow batteries, which use 
dissolved electroactive chemicals such as zinc or vana-
dium to circulate in tanks of liquid, rather than as solid 
electrodes.42 The advantage is that they have high cycle 
durability since charge/discharge cycles do not physically 
deteriorate electrodes.43 However, they have low energy 
densities and require large volumes of liquid and equip-
ment for circulation.44 Vanadium redox flow batteries are 
suited to electrical grids and have been employed com-
mercially for that purpose.45

Employing older technologies is also a viable strategy, par-
ticularly if weight is not an overriding consideration, as is 
the case for stationary storage. Lead-acid batteries and 
other alternatives might be more suitable than any of the 
Li-ion options due to reduced cost.

Outside of traditional batteries, several other energy stor-
age avenues exist and are being explored.

Battery supercapacitor hybrids (BSHs) combine an elec-
trochemical battery with capacitors to store energy and 
present exciting possibilities. Capacitors store an elec-
trical charge by holding a charge on metal plates sepa-
rated by an insulator (a dielectric material). By replacing 
one of the traditional electrodes with an electrical double 
layer capacitor,46 BSHs can provide much higher power 
by discharging more quickly compared to electrochemical 
batteries.47 While energy density per unit volume is low, 
BSHs, have faster charging/discharging speed, improved 
lifespan (as measured by the number of charge/discharge 
cycles) and do not have the same risk associated with 
thermal runaway when compared to traditional electro-
chemical batteries.48

Fuel cells consume a fuel while discharging. The fuel must 
be replenished, much as a rechargeable battery must be 
recharged. Fuel cells are potentially more efficient than an 
internal combustion engine driving a generator because a 
fuel cell can convert the chemical fuel directly to electri-
cal energy.49 Hydrogen fuel cells emit only water,50 making 
them zero-emission batteries.51 The hydrogen fuel can be 
obtained through electrolysis of water (requiring energy), 
or by reforming methane and discarding or sequestering 
the resulting CO2.
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Mechanical energy storage technologies include pumped 
hydropower,52 flywheel technologies, and elastomeric and 
compressed air energy storage.53 These technologies offer 
promise for grid storage,54 but might find other utility. Each 
technology faces challenges, for example limitations based 
on geography,55 loss of cycle durability, and/or self-dis-
charge over time. Thermal, electromagnetic, and other 
chemical means are other concepts for energy storage.

Research Directions

For commercial and government purposes, one strategy 
is to pursue research efforts simultaneously in as many 
directions as possible. The question then becomes: What 
should be the total level of effort and who should fund that 
research?

The US currently uses incentives that include grants, tax 
relief, government laboratory research, and other spon-
sored research projects that could support a variety of 
research directions. Given the importance of the technol-
ogy, greater coordination and increased effort might accel-
erate development to ensure a leadership position. The 
government could “grade” the viability of various technol-
ogies to prioritize efforts, but breakthroughs might come 
from surprising directions. Research and development of 
rechargeable batteries using alternative materials can con-
tribute to economic growth and provide a hedge for supply 
issues. Technical needs and supply chain issues are import-
ant considerations that require a diversity of approaches. 
Diversification can alleviate supply limitations and provide 
options for users with smaller-volume orders.

Commercial enterprises stand to gain the most as improved 
battery technology is obtained, but the US government 
has a vested interest in assured access for both commercial 
and government interests. In a competitive environment of 
rechargeable battery supply, particularly of Li-ion batteries, 
the US should maintain a leadership position in the devel-
opment of improvements and alternatives.

An Impending Collision

Barring a breakthrough in battery technology, a Li-ion wreck 
is imminent. Rechargeable batteries are vital to our way of 
life, but current Li-ion battery technology is on track to hold 
a monopoly on future production. The escalating demand 
for batteries will skyrocket as electric vehicles take over our 
roads. Further, renewable energy production will require 
load balancing using battery storage. As rechargeable bat-
teries wear out and replacements are required, demand 
will swell even further. When demand exceeds supply, price 
increases and supply disruptions are inevitable.

China has avowed its intention to promote manufacturing 
that includes “energy saving cars and new energy cars.”56 
China’s actions by their industries in securing Li-ion sup-
ply chains and manufacturing capabilities suggest that 
their implementation strategy is to lock up the market in 
the crucial component of Li-ion rechargeable batteries. In 
the same way that China dominates the solar cell market 
and Asia dominates semiconductor manufacturing, the US 
could find itself dependent on China for Li-ion batteries. 
This dependence could occur despite current efforts to 
incentivize greater US production, resulting in significant 
economic impacts for the commercial sector and opera-
tional impacts for defense applications.

Moreover, the performance of Li-ion batteries will need 
improvement to support future applications. Improvements 
are possible but not automatic. Current trends suggest a 
lack of focus on developing those improvements, because 
most efforts are at an emerging research stage. The Invisi-
ble Hand may not be pushing hard enough because there 
is an assumption that current technology is good enough 
or that someone else will satisfy the demand.

Clearly, the US needs to focus on research and develop-
ment, coordinate efforts, and develop approaches to 
mitigate supply chain issues and assure future supplies. 
Approaches that prevent over-reliance on current Li-ion 
supply chains is important for US economic and national 
security futures.
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Minerals and Civilization

Earth’s natural mineral resources provide vital ingredients 
to the technologies that are fundamental to modern soci-
ety. Epochs of civilization have long been defined by the 
metallurgical technologies of the time—from copper to 
bronze, and later iron, and most recently, steel. Over mil-
lennia, humans have extracted new and varied materials 
from ores, combined them into alloys, and used these nat-
urally derived products to make the technologies of their 
age. Many different minerals are key constituents in today’s 
consumer electronics, green technologies, military hard-
ware, medical tools and devices, automobiles, satellites, 
and most every product of modern civilization.

Minerals have various properties that make them particu-
larly useful for specific applications. Iron is much stronger 
than bronze, which in turn is stronger than copper. Chro-
mium helps make steel non-corrosive. Lithium is useful for 
making rechargeable batteries. Single crystal silicon is the 
basis for most semiconductors. Titanium and titanium-alu-
minum alloys are used in jet engine fan blades due to their 
strength and light weight. Zirconium is used for the clad-
ding of nuclear power plant fuel rods, sometimes alloyed 
with niobium. Xenon is used as a propellant for ion thrusters 
on satellites. An alloy of iron, neodymium, and boron has 
high ferromagnetism and thus makes the strongest perma-
nent magnets. Ongoing research by scientists continues to 
find new alloys and mineral combinations to improve mate-
rial properties and uncover new utility.

With the ever-expanding list of minerals in new products, 
we see how essential they are for everyday life. Consumer 
products, defense applications, power generation, trans-
portation, and even food products make extensive use 
of minerals. Future developments in clean energy, smart 
cities, mobile communications, and other sectors will 
result in even higher demand for minerals. It is therefore 
critical that the United States ensure its access to these 
vital resources, for today and tomorrow.

What is Critical about Critical Minerals?

With the current US focus on supply chains, it is reasonable 
to ask whether the supply of minerals will continue to meet 
demand, and whether shortages may occur should suppli-
ers become limited.

In the United States, certain materials are designated as 
“critical minerals.” US Executive Order 13817, from 2017, 
defines critical minerals as non-fuel minerals resources that 
are of vital importance, essential to the manufacturing of 
products, and for which the supply chain is vulnerable. The 
Energy Act of 2020 directs that a list of critical minerals be 
revised every three years. The US Geological Survey (USGS) 
publishes such a list, which in 2018 included 35 critical 
materials.1 The updated 2022 list has 50 minerals2 (see list). 
Most minerals are simply listed by their principal metallic 
element, but some have been given common names refer-
encing specific molecular materials, such as barite (barium 
sulfate), fluorspar (calcium fluoride), and graphite (a specific 
form of carbon). Criticality, and thus inclusion on the USGS 
listing, is a judgement call.

Stockpiling and Supply Chains

The US Department of Defense (DoD) stockpiles critical 
minerals for national security purposes under the National 
Defense Stockpile, and some minerals for clean energy 
technologies, per an agreement with the Department of 
Energy.3 Stockpiling has a long history in the United States, 
from the Strategic and Critical Materials Stock Piling Act 
of 1939, to other programs in subsequent years such as 
the Strategic National Stockpile (mostly medical equip-
ment), the Strategic Petroleum Reserve, and the National 
Defense Stockpile.4 The latter, maintained by the Defense 
Logistics Agency,5 contains about a billion dollars worth of 
metals. Reliance on stockpiling is considered by many to 
be problematic6 as it requires a determination of what min-
erals (and materials and equipment) are critical, how much 
needs to be stored to provide for strategic contingencies, 
and the act of building a stockpile only further distorts an 
already constrained supply chain. Stockpiling generally 
focuses on defense needs rather than the needs of the civil-
ian economy. Often, reliance on critical minerals is hidden 
because materials are incorporated in imported finished or 
semi-finished goods.7

Today, China has a stranglehold on many critical minerals 
supply lines. In 2010, China curtailed the shipment of rare 
earth elements (REEs) to Japan because of a maritime dis-
pute.8 In 2020, China similarly threatened to cut off REE 
supply to three US-based defense manufacturers,9 endan-
gering F-35 production, in response to a US defense deal 
with Taiwan.
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MINERAL PRIMARY APPLICATIONS

Magnesium (Mg) Alloys and for reducing metals

Manganese (Mn) Steelmaking and batteries

Neodymium (Nd) Permanent magnets, rubber catalysts, 
medical and industrial lasers

Nickel (Ni) Helps produce stainless steel, superalloys, 
and rechargeable batteries

Niobium (Nb) Steel and superalloys

Palladium (Pd) Catalytic converters and as a catalyst agent

Platinum (Pt) Catalytic converters

Praseodymium (Pr) Permanent magnets, batteries, aerospace 
alloys, ceramics, and colorants

Rhodium (Rh) Catalytic converters, electronic components, 
and as catalysts

Rubidium (Rb) R&D in electronics

Ruthenium (Ru) Catalysts, as well as electrical contacts  
and chip resistors in computers

Samarium (Sm) Permanent magnets, absorber in nuclear 
reactors, and in cancer treatments

Scandium (Sc) Alloys, ceramics, and fuel cells

Tantalum (Ta) Electronic components (mostly capacitors 
and in superalloys)

Tellurium (Te) Solar cells, thermoelectric devices, and 
alloying additive

Terbium (Tb) Permanent magnets, fiber optics, lasers,  
and solid-states devices

Thulium (Tm) Various metal alloys and lasers

Tin (Sn) Protective coatings and alloys for steel

Titanium (Ti) White pigment and metal alloys

Tungsten (W) Wear-resistant metals

Vanadium (V) Alloying agent for iron and steel

Ytterbium (Yb) Catalysts, scintillometers, lasers, and 
metallurgy

Yttrium (Y) Ceramic, catalysts, lasers, metallurgy,  
and phosphors

Zinc (Zn) Metallurgy to produce galvanized steel

Zirconium (Zr) High-temperature ceramics and  
corrosion-resistant alloys

MINERAL PRIMARY APPLICATIONS
Aluminum (Al) Almost every sector

Antimony (Sb) Lead-acid batteries and flame retardants

Arsenic (As) Semi-conductors

Barite (Barium 
sulfite)

Hydrocarbon production

Beryllium (Be) Alloying agent in aerospace and defense 
industries

Bismuth (Bi) Medical and atomic research

Cerium (Ce) Catalytic converters, ceramics, glass, 
metallurgy, and polishing agents

Cesium (Cs) R&D

Chromium (Cr) Stainless steels and other alloys

Cobalt (Co) Rechargeable batteries and superalloys

Dysprosium (Dy) Permanent magnets, data storage devices, 
and lasers

Erbium (Er) Fiber optics, optical amplifiers, lasers, and 
glass colorants

Europium (Eu) Lighting phosphors and nuclear  
control rods

Fluorspar 
(Calcium fluoride)

Manufacturing of aluminum, cement, steel, 
gasoline, and fluorine chemicals

Gadolinium (Gd) Medical imaging, permanent magnets, and 
steelmaking

Gallium (Ga) Integrated circuits and optical devices (e.g., 
LEDs)

Germanium (Ge) Fiber optics and night vision technologies

Graphite (Mineral 
form of carbon)

Lubricants, batteries, and fuel cells

Hafnium (Hf) Nuclear control rods, alloys, and high-
temperature ceramics

Holmium (Ho) Permanent magnets, nuclear  
control rods, and lasers

Indium (In) Liquid crystal display technologies

Iridium (Ir) Coating for anodes in electrochemical 
processes and chemical catalyst

Lanthanum (La) Helps produces catalysts, ceramics glass, 
polishing compounds, metallurgy, and 
batteries

Lithium (Li) Rechargeable batteries

Lutetium (Lu) Scintillators for medical imaging, electronics, 
and cancer therapies

Magnesium (Mg) Alloys and for reducing metals

Table 1. Critical Minerals with their Primary Applications*

* Adapted from the US Geological Survey 2022 List of Critical Minerals  
“U.S. Geological Survey Releases 2022 List of Critical Minerals,” U.S. Geological Survey, February 22, 2022.
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Anticipating Needs

What are the likely critical minerals of the future? Where are the likely supply bottlenecks?

While the future is hard to predict, it is a safe bet that the future will involve a large demand for certain min-
erals. Overall demand for current critical minerals is increasing, with a predicted five-fold increase in use by 
2050.13 Electric vehicles will require large supplies of lithium to be used for the production of batteries, and 
may require other critical minerals. Electric vehicles are estimated to use six times the amount of critical miner-
als relative to conventional cars.14 Until alternatives can be found, the cobalt used in lithium-ion batteries could 
become especially critical. Rare earth elements (REEs), such as neodymium, are expected to be increasingly 
important for magnets used in motors and generators. Clean energy systems are said to require, in addition to 
lithium and REEs, nickel, manganese, and aluminum—all in large quantities.15 A resurgence of nuclear power 
sources using new technology plants might require large resources of uranium and/or thorium, boron, zirco-
nium, and other yet-to-be-determined materials. Aerospace applications are looking at new airframe struc-
tures and more efficient engine designs, as well as stronger and lighter landing gear and corrosion resistant 
components, all of which will involve minerals and new manufacturing techniques involving different materials.

The Russian-Ukraine conflict in 2022 has put another spot-
light how foreign policy decisions can affect global supply 
chains. In addition to its reserves of oil and gas, Russia is a 
major supplier of certain metals. As one example, the price 
of palladium used in automobile catalytic converters has 
shot up since the Russian invasion of Ukraine.10

Natural catastrophes, such as disease outbreaks or extreme 
weather events, can impact any point in the supply chain, 
causing reductions in available personnel or facilities.

Of the 50 designated critical materials from the USGS 
listing, the United States is 100% reliant on imports for 
fourteen of them, and more than 75% reliant on imports 
for another ten.

In February 2021, Executive Order 14017 launched a 100-
day review and strategy development process to address 
vulnerabilities in the US supply chains that included 

critical minerals and materials as one of the focus areas.11 
In February 2022, the Administration announced a num-
ber of actions to secure supply chains for certain min-
erals.12 In April 2022, the Defense Production Act (DPA) 
was invoked to boost critical mineral production in the 
United States.

The National Strategic and Critical Minerals Production 
Act, intended to change rules and regulations surround-
ing mining permitting in the United States, has been intro-
duced in various forms several times in Congress since 
2012, but has yet to pass. Hearings continue to be held on 
the Hill regarding critical minerals in an attempt to further 
secure supplies.

With growing demand and reliance on critical minerals (see 
box, “Anticipating Needs”), not every user will be guaran-
teed access. The anticipated increase in market demand 
for certain materials could lead to competition among 
end-product manufacturers.

54 © 2022, Potomac Institute for Policy Studies

STEPS 2022, Issue 7



It is not just the quantity of minerals required that will 
determine which are critical. The diversity of materials in 
products is increasing: the average smartphone contains 
something like 75 different materials sourced from miner-
als (see figure).16,17 A supply chain issue in any one mate-
rial might hamper production.

From Rock to Commodity

Critical minerals are generally distributed throughout the 
earth, embedded in rocks in the crust of the earth at vary-
ing concentrations. Certain rocks contain relatively high 
concentrations of particular minerals, and those ores tend 
to be located in small pockets in certain locations—i.e., 
potential mine sites.

Today, many minerals are exploited from just a few mines, 
and sometimes predominantly just one main mine, pro-
viding a source for the rest of the world. For example, 
South Africa and Zimbabwe produce 80% of the world’s 
platinum, Australia and Chile produce 75% of the world’s 
lithium, and 75% of cobalt is extracted in the Democratic 
Republic of Congo.18

Rare earth elements are not rare in overall terrestrial abun-
dance,19 but are found in low concentrations mixed in with 
other elements and minerals.20 The rare earth metal neo-
dymium (Nd), used for making strong permanent magnets 
and special lasers, is found in low concentrations in the 
ores monazite and bastnäsite. While these ores can be 
found in earth’s crust throughout the world,21 more than 
half of the known minable concentrations are found in 
China and Vietnam.22

Image credit: Alex Taliesen.
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Separating elements and minerals from rocks often requires 
complex chemical processes, and results in waste materials 
that often contain toxic and/or radioactive byproducts.23 
Further, the separation and refining process is often energy, 
water, and other resource intensive. Refining is often done 
in distant locations from the mining operation. China cur-
rently performs roughly 90% of the refining and production 
of REEs into magnets.24,25 There are minerals mined in the 
United States that are exported to China for the processing 
and refining stages.26 Similarly, more than half of all lithium 
extracted globally is currently refined in China.27

Refined minerals are then purchased and used by manufac-
turing firms to make products. Today, roughly 30% of the 
world’s manufacturing of products takes place in China.28

Prospects for Mineral Production in the  
United States

The United States is not without natural resource reserves of 
its own. For example, the company MP Materials hopes to 

secure sufficient REE magnets for US needs using domestic 
mining, processing, and manufacturing. Berkshire Hatha-
way Energy is building demonstration plants to explore the 
extraction of lithium from Imperial Valley29 in California and 
from the brine of geothermal power plants at the Salton 
Sea also in California.30

However, the mining permit process in the United States 
averages 7 to10 years. In contrast, countries like Australia 
and Canada have typical permitting processes of 2 years.31 
Mining and refining operations require a large operation 
and a trained workforce,32 and it has been difficult for 
American companies to compete financially. The history 
of the Mountain Pass mining operation is illustrative of the 
problems facing the US mining industry (see box page 57). 
Similarly, the Albemarle lithium mine in North Carolina33 
shut down in 2021 because the then-depressed global lith-
ium prices could not balance the regulatory and operating 
costs. A US Administration “Interagency Working Group” is 
developing legislative and regulatory proposals to support 
“responsible mining” in the United States.34
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Mountain Pass Mine, Molycorp, and MP Materials

In the mid-1900s, the United States dominated much of the global market for REEs and related 
materials. From the mid-1960 until the ‘80s, Molycorp’s Mountain Pass (MP) mine in California was 
considered the world’s top source of rare earth oxides.35 But environmental and financial challenges 
at Mountain Pass led the mine to close in 2002. In 2012, Molycorp reopened MP, only for China’s 
increased production to greatly outpace demand, driving down prices, and causing Molycorp to file 
for bankruptcy in 2015. In 2017, MP Materials Corp purchased the mine. In 2020, Mountain Pass 
supplied almost 16% of the world’s REE production. In October 2020, Shenghe (a Chinese company) 
was the sole buyer of the mine’s rare earth concentrates, which it then sent on to China for process-
ing.36 The mine went public in 2021, and the Nuclear Regulatory Commission authorized the mining 
license to be transferred; Shenghe has about 8% ownership of MP Materials now.37 The mine con-
tinues to face hurdles and investing complexities.38 In February 2022, DoD announced it would be 
investing just over $100 million to enhance America’s rare earth supply chain resiliency, including $35 
million to MP Materials to separate and process heavy REEs at the Mountain Pass facility in California. 
It was further announced the MP Materials would be building a magnet manufacturing plant involv-
ing $700 million in investments, with the intention of providing an end-to-end rare earth magnet 
production capability in the United States. Ground has broken on a manufacturing facility in Texas.39

Bradley Van Gosen/U.S. Geological Survey
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Eyes for critical minerals,”49 or to establish a North Ameri-
can mining center based on mineral reserves.50

It thus may behoove the US government to exercise levers 
of influence though loans, subsidies, regulations, market 
guarantees, and tariffs to stimulate domestic production of 
certain critical minerals to ensure supply stability, as well 
as fostering agreements with allies and trustworthy sources 
for access to minerals. The strategy requires, however, that 
accurate predictions be made by government forecasters 
as to the likely demand and criticality of specific materials. 
This is a complex endeavor that is generally handled by 
companies for the commercial marketplace.

Invest in Research and Development  
for Alternatives

A complementary approach to securing supplies of critical 
minerals is to pursue research and development (R&D) that 
might uncover comparable or improved capabilities sep-
arate from today’s processes or materials. Research might 
lead to better and more efficient end-products that make 
use of components with more accessible supplies. Alter-
native materials as well as advances in mining, processing, 
and recycling can relieve pressure on the current critical 
minerals supply chains.

New composite materials, such as carbon fiber, are find-
ing utility in replacing metals for structural elements of 
products. Research in the field of materials science has 
explored substitute materials for materials for neodym-
ium51 in wind turbines and magnets.52 Advanced Research 
Projects Agency–Energy (ARPA-E) sponsored a “Rare Earth 
Alternatives in Critical Materials” (REACT) project to study 
replacements for REEs.53 Other research searches for prac-
tical superconducting materials.54 Research involves risk, 
but payoffs can be large.

Research might also lead to improved extraction and 
refinement methods to obtain minerals. The development 
of new extractive techniques could shift the economic bal-
ance of mineral deposits previously deemed incapable 
of delivering a positive return. Offshore deep-sea mining 
might deliver new supplies of minerals, if additional policy 
issues can be overcome.55 Some believe asteroid mining 
may also provide accessible reserves of critical minerals if 
costs can be brought low enough.

US Supplies of Minerals Going Forward

In 2019, the United States published a Federal strategy 
“to ensure secure and reliable supplies of critical miner-
als,”40 which includes a call to “improve understanding of 
domestic critical mineral resources,” from ores as well as 
from recycling. (The US Government Accountability Office 
has recommended that the strategy be updated.41) The US 
Department of Energy has developed an R&D roadmap42 
to diversify supplies, develop substitutes, and improve 
reuse and recycling, to include all aspects of the supply 
chain (mining, refining, manufacturing, and recycling). The 
US DoD was the lead for the critical minerals and materials 
report in the 100-day study responding to the executive 
order 14017 on America’s supply chains, promoting sus-
tainable production and conservation of strategic and crit-
ical materials,43 and recommending (among other actions) 
“expanding sustainable domestic production and process-
ing,” which includes recycling and new mining methods. A 
DoD action plan and update was provided by DoD in Feb-
ruary 2022.44 The way forward involves securing supplies of 
minerals and developing alternatives that use supplies that 
are more easily accessed, as detailed in the strategies and 
action plans developed by the various US agencies.

Securing Supplies

The national interest is for more stable supply chain of 
resources, mitigating the risk of supply chain disruptions. 
The US DoD has “mapped” the sources and supply chains 
for critical minerals and strategic and critical materials as 
well, and has identified “latent capacity” of the United 
States to produce materials if sufficient incentives were 
in place.45 The implication is that through a network of 
agreements and policy measures, it should be possible for 
the United States to ensure sufficient supplies for decades 
to come.

Discerning multiple pathways can help provide greater sta-
bility and help contain costs. Proactively finding multiple 
supply pathways is often feasible. For example, uranium 
is produced and exported from Canada46 and lithium by 
Pilbara Minerals in Australia.47 Japan has made headway 
in processing and refining REEs,48 reducing its depen-
dence on supplies from China compared to 2010, through 
investment and partnerships in other countries. Arsenic is 
imported to the United States from Morocco and Belgium 
in addition to China. There are proposals to create a “Five 
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Research and development, particularly in the materials 
sciences area, can provide benefits for the general good. 
Historically, the most innovative and beneficial research 
begins with US government direction.

Summary

Critical minerals are essential for the composition of many 
consumer devices and defense applications. Demand is 
expected to explode in the upcoming years, but it is unclear 
if supplies will be available to all. The US defense and com-
mercial sectors will be negatively impacted if access to 
needed materials becomes limited. The “critical mineral” 
designation already signals that there may be a supply chain 
vulnerability of these materials due to reliance on imports.

To mitigate risk, the United States is attempting to stabilize 
supply chains, encompassing mining, processing, refining, 
and manufacturing. Between invigorating domestic produc-
tion and secure supply chains, and developing new materials 
for alternatives, the United States should be able to satisfy 
needs for minerals and other materials far into the future.
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On July 28, 2022, Congress finally passed the “Creat-
ing Helpful Incentives for Producing Semiconductors,” 
or “CHIPS” Act, also called the “CHIPS & Science Act.” 
The bill authorizes $280B for technology and research and 
development (R&D) over five years; of that, $52B is allo-
cated to semiconductor production and another $25B 
corporate tax credits. The $52B for semiconductors was 
appropriated, with $39B allocated for increasing domestic 
manufacturing, and $13B for R&D over the next five years. 
Already, American semiconductor manufacturers are lining 
up to “get their share of the pie.” The CHIPS Act is critical, 
because the United States only produces 12% of worldwide 
chips, while US semiconductor consumption is estimated at 
33%. The US economic well-being is dependent upon for-
eign entities (South Korea, China, and Taiwan) making their 
chips available to US industry. It may seem far-fetched that 
any country would restrict access to microelectronics by the 
United States and allies, but similar restrictions have hap-
pened before. The same was true when the Organization 
of Petroleum Exporting Countries (OPEC) embargoed oil 
to the United States and the west, creating the recession 
of the early 1970s. At the time, the United States produced 
67% of its oil needs. If the phrase “data is the new oil” is 
true, then US economic well-being is critically dependent 
on a resource that the United States does not produce in 
sufficient quantities.

Now, the hard reality. The funding allocated by the gov-
ernment is barely a down payment. In the last year, South 
Korea has pledged $450B (over 10 years), China $150B, 
and the European Union about €40B. More troubling is that 
a coordinated US investment strategy has not been devel-
oped. Production of microelectronics requires multiple dis-
crete steps. The chip must be designed (the Unted States 
is the global leader here), produced as dyes on wafers (the 
Unted States produces 12% of the global production), 

packaged and tested (the Unted States has about 5% of 
global market), then assembled in a system on a printed 
circuit board (PCB) (the Unted States is less than 5%, China 
dominates). If the United States focuses only on wafer pro-
duction, without packaging, test, and assembly, the United 
States will still be critically dependent upon a product not 
made domestically. Without a balanced investment, devel-
oped by assessing the risk and payoff of each supply chain 
phase, the US investment will aid individual companies, but 
not overall economic or national security.

Moreover, there are many steps in the production of 
semiconductors. The large variety of types of chips fur-
ther increases the number of facilities that are needed. 
The $52B will only go so far to address what the United 
States would need for all-domestic production. A mod-
ern, “state-of-the-art” foundry can cost $20B or more. 
Two state-of-the-art foundries could absorb all the man-
ufacturing funds, and not substantially change national 
security, because systems would still be vulnerable to 
malicious actions.

We must consider the risks at all phases and all types of 
production and reduce risk using the available funds. Peo-
ple often assume that all needs will be served by “state-of-
the-art” technology, and that this equates to a small node 
size. This is incomplete thinking. Node size matters in sil-
icon-based semiconductors, where state-of-the-art is gen-
erally 5nm to 7nm minimum feature sizes. In general, the 
smaller the feature size, the more advanced the technology 
and the more expensive the factory. But the materials and 
design methodologies are as important as node size. Lead-
ing US-based research is investigating all such aspects, pro-
viding capable feature-rich parts that can be made down to 
12nm. The need, however, will be for a variety of sizes, and 
many different types of semiconductors.
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Beyond state-of-the-art chips, the majority of chips cur-
rently used in the United States and for the next decade 
will be between 12-45nm (as projected by the Semiconduc-
tor Industrial Association) and over 70% of the chips will be 
at larger sizes. The great auto constriction of 2021 occurred 
because of the lack of availability of 45nm chips known as 
micro-controllers. This shortage resulted in more than a 
$200B loss in worldwide auto sales—a slump expected to 
last until 2023. Of significance, this is the market that the 
People’s Republic of China is targeting, with an investment 
of between $150-$250B. In the 14th 5-Year Plan, China tar-
gets 2030 as the year to be the dominant producer of these 
mid-sized nodes. Thus, the United States needs to invest 
heavily in the node sizes 12-45nm (and larger).

Even with the CHIPS Act, the US will not have this capabil-
ity. In both package and test and PCBs, the United States 
has under 5% of the global market share. Unfortunately, in 

both of these supply chain stages, a potential adversary can 
introduce hardware or software elements that could allow an 
adversary to remotely modify or control the performance of 
microelectronics. Having a domestic capacity for producing 
chips without having secure access to package and test and 
reliable PCBs means the United States could be harmed by 
either remote attack, or more likely, serious disruptions to the 
supply chain. This vulnerability also needs to be addressed. 
PCBs are an interesting case—the United States lags in both 
capacity and capability. PCBs made in other parts of the 
world carry more advanced interconnects (traces) and sub-
components. The saying is “chips don’t float,” which means 
a chip without the final assembly steps is of little value (and 
conversely, a PCB without a chip is also of little value).

Without sufficient capacity in each step, the United States 
faces national and economic security risks. While there 
are promising approaches to reduce the risk of malicious 
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implants from potential adversaries, these approaches 
are currently unproven. Further, validation of the integrity 
of foreign microelectronics only matters if the parts are 
actually available to the United States. Without domestic 
capacity in all elements of the supply chain, the United 
States is vulnerable.

So, how can this problem be addressed? First, the govern-
ment has to commission a risk-based strategy to identify the 
cost and value of all aspects of the microelectronics supply 
chain, and the risk of not having a portion of the chain meet-
ing domestic demand. This would develop an investment 
priority (Step 1). Such a strategy could be done by short-
term commission, or perhaps better, a public-private-part-
nership firm.

A concerted effort needs to be made to build demand 
to incentivize domestic production. Step 2 would be 

establishment of a policy or law that ensures the integrity of 
microelectronics used in critical national infrastructure. This 
means that all microelectronics used in such systems meet 
production standards to ensure components would be free 
of hidden bugs, triggers, back doors, and the like. These 
standards would be established by industry (similar to the 
auto industry), and would be audited prior to use in criti-
cal infrastructure. Critical infrastructure would include, at a 
minimum: weapons platforms; the electric, power, and water 
grids; the air traffic control network; and banking and health 
industries. In doing this, the nation would build the demand 
for secure microelectronics.

These two steps, along with the money from the CHIPS 
Act begin the process of restoring the US microelectron-
ics industry. Not doing so leaves future generations of citi-
zens at national and economic risk, and ensures the United 
States will continue to wane on the international stage.
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